
Computer Physics Communications 187 (2015) 204–216
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

DualSPHysics: Open-source parallel CFD solver based on Smoothed
Particle Hydrodynamics (SPH)✩

A.J.C. Crespo a,∗, J.M. Domínguez a, B.D. Rogers b, M. Gómez-Gesteira a, S. Longshaw b,
R. Canelas c, R. Vacondio d, A. Barreiro a, O. García-Feal a
a EPHYSLAB Environmental Physics Laboratory, Universidade de Vigo, Spain
b Modelling and Simulation Centre (MaSC), School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, United Kingdom
c CEHIDRO, Instituto Superior Tecnico, Lisbon, Portugal
d Department of Civil Environmental Engineering, University of Parma, Parma, Italy

a r t i c l e i n f o

Article history:
Received 18 March 2014
Received in revised form
16 September 2014
Accepted 3 October 2014
Available online 18 October 2014

Keywords:
SPH
Free-surface
Meshfree methods
GPU

a b s t r a c t

DualSPHysics is a hardware accelerated Smoothed Particle Hydrodynamics code developed to solve free-
surface flow problems. DualSPHysics is an open-source code developed and released under the terms of
GNU General Public License (GPLv3). Along with the source code, a complete documentation that makes
easy the compilation and execution of the source files is also distributed. The code has been shown to
be efficient and reliable. The parallel power computing of Graphics Computing Units (GPUs) is used to
accelerate DualSPHysics by up to two orders of magnitude compared to the performance of the serial
version.

Program summary

Program title: DualSPHysics

Catalogue identifier: AEUS_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUS_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: GNU General Public License

No. of lines in distributed program, including test data, etc.: 121,399

No. of bytes in distributed program, including test data, etc.: 12,324,308

Distribution format: tar.gz

Programming language: C++ and CUDA.

Computer: Tested on CPU Intel X5500 and GPUs: GTX 480, GTX 680, Tesla K20 and GTX Titan.

Operating system: Any system with a C++ and NVCC compiler, tested on Linux distribution Centos 6.5

CUDA: Tested on versions 4.0, 4.1, 4.2, 5.0 and 5.5 with driver version 331.38.

Has the code been vectorised or parallelised?: Different threads of CPU or number of cores of GPU.

RAM: Tens of MB to several GB, depending on problem

Classification: 4.12.

Nature of problem:
The DualSPHysics code has been developed to study free-surface flows requiring high computational cost.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author. Tel.: +34 988387425.

E-mail addresses: alexbexe@uvigo.es (A.J.C. Crespo), jmdominguez@uvigo.es (J.M. Domínguez), benedict.rogers@manchester.ac.uk (B.D. Rogers), mggesteira@uvigo.es
(M. Gómez-Gesteira), Stephen.Longshaw@manchester.ac.uk (S. Longshaw), ricardo.canelas@ist.utl.pt (R. Canelas), renato.vacondio@unipr.it (R. Vacondio),
anxo.barreiro@uvigo.es (A. Barreiro), orlando@uvigo.es (O. García-Feal).
http://dx.doi.org/10.1016/j.cpc.2014.10.004
0010-4655/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2014.10.004
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2014.10.004&domain=pdf
http://cpc.cs.qub.ac.uk/summaries/AEUS_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:alexbexe@uvigo.es
mailto:jmdominguez@uvigo.es
mailto:benedict.rogers@manchester.ac.uk
mailto:mggesteira@uvigo.es
mailto:Stephen.Longshaw@manchester.ac.uk
mailto:ricardo.canelas@ist.utl.pt
mailto:renato.vacondio@unipr.it
mailto:anxo.barreiro@uvigo.es
mailto:orlando@uvigo.es
http://dx.doi.org/10.1016/j.cpc.2014.10.004

A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216 205

Solution method:
DualSPHysics is an implementation of Smoothed Particle Hydrodynamics, which is a Lagrangianmeshless
particle method.
Running time:
6 h on 8 processors of Intel X5500 (15 min on GTX Titan) for the dam-break case with 1 million particles
simulating 1.5 s of physical time (more than 26,000 steps).

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian mesh-
less method that is increasingly used for an extensive range of
applications within the field of Computational Fluid Dynamics
(CFD) [1] where particles represent the flow, interact with struc-
tures and can exhibit large deformation with moving boundaries.
The SPH technique is approaching a mature stage, with continu-
ing improvements and modifications meaning the accuracy, sta-
bility and reliability of the model are reaching an acceptable level
for practical engineering applications.

SPHysics is an open-source SPH model developed by re-
searchers at the Johns Hopkins University (US), the University of
Vigo (Spain), the University of Manchester (UK) and the Univer-
sity of Rome, La Sapienza. The software is available to download
from www.sphysics.org. A complete guide of the FORTRAN code is
found in [2,3]. The SPHysics code was validated for different prob-
lems of wave breaking [4], dam-break behaviour [5], interaction
with coastal structures [6] orwith amoving breakwater [7]. A shal-
low water version was also developed [8,9]. Although SPHysics al-
lows modelling problems with high resolution, the main problem
for the application to real engineering problems is its high com-
putational cost, therefore SPHysics is rarely applied to large do-
mains. Hardware acceleration and parallel computing are required
to make codes such as SPHysics more useful and versatile.

Supercomputers are expensive to buy and maintain and prac-
titioners usually do not have access to classical High Performance
Computing (HPC) facilities. Graphics Processing Units (GPUs) ap-
pear as a cheap alternative to accelerate numerical models. GPUs
are designed to manage huge amounts of data and their comput-
ing power has developed in recent years to be much faster than
conventional central processing units (CPUs) in certain scenarios.
NVIDIA’s Compute Unified Device Architecture (CUDA) is a paral-
lel programming framework and language for GPU computing us-
ing extensions to the C/C++ language. Researchers and engineers
of different fields are achieving high speedups implementing their
codes with the CUDA language. The computing power of GPUs can
be also applied to SPH methods [10], where the algorithmic struc-
ture inherently exposes parallelism.

The code DualSPHysics has been developed by starting from
the FORTRAN SPH formulation implemented in SPHysics. This
code is considered robust and reliable but not optimised for large
simulations. DualSPHysics is implemented in C++ and CUDA and
is designed to launch simulations either on multiple CPUs us-
ing OpenMP or on a GPU. The GPU portion of DualSPHysics [11]
implements the most appropriate parallelisation to maximise
speedup during particle interaction computation. The first rigor-
ous validations of DualSPHysics on GPUs were presented in [12]
and the code has been recently applied to compute forces ex-
erted by large waves on the urban furniture of a realistic prom-
enade [13], to study the run-up on a real armour block coastal
breakwater [14] and to simulate large waves generated by land-
slide events [15].
DualSPHysics is an open-source code developed and redis-
tributed under the terms of the GNU General Public License as
published by the Free Software Foundation. Along with the source
code, documentation that describes the compilation and execu-
tion of the source files is also distributed. One of the purposes
of this code is to encourage other researchers to try SPH. Most
downloads to date have been registered by researchers and stu-
dents that have conducted their research on fluid dynamics us-
ing Smoothed Particle Hydrodynamics models. Furthermore, the
code has been downloaded not only by students and researchers
from universities and institutes but also by companies with in-
dustrial interests. The increasing interest in SPH is indicated by
the appearance of other important SPH solvers such as the open
source JOSEPHINE [16], GPUSPH [17], AQUAgpusph [18], ISPH [19],
GADGET [20], pysph [21] or closed source SPH-flow [22], SimPAR-
TIX [23], Pasimodo [24].

In the following sections, the SPH formulation implemented
in DualSPHysics and associated optimisation techniques are
described. Sections describing how to compile and run the code
are also provided and finally, several study cases are presented
including comparison with experimental data and a performance
analysis.

2. Smoothed Particle Hydrodynamics method

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian mesh-
less method. The technique discretises a continuum using a set of
material points or particles. When used for the simulation of fluid
dynamics, the discretised Navier–Stokes equations are locally in-
tegrated at the location of each of these particles, according to the
physical properties of surrounding particles. The set of neighbour-
ing particles is determined by a distance based function, either cir-
cular (two-dimensional) or spherical (three-dimensional), with an
associated characteristic length or smoothing length often denoted
as h. At each time-step new physical quantities are calculated
for each particle, and they then move according to the updated
values.

The conservation laws of continuum fluid dynamics are trans-
formed from their partial differential form to a form suitable for
particle based simulation using integral equations based on an in-
terpolation function, which gives an estimate of values at a specific
point. Typically this function is referred to as the kernel function
(W) and can take different forms, with the most common being
cubic or quintic. In all cases however, it is designed to represent a
function F(r) defined in r ′ by the integral approximation

F(r) =


F(r ′)W (r − r ′, h)dr ′. (1)

The smoothing kernel must fulfil several properties [25,26], such
as positivity inside a defined zone of interaction, compact support,
normalisation and monotonically decreasing value with distance
and differentiability. For a more complete description of SPH, the
reader is referred to [27,28].

206 A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216
The function F in Eq. (1) can be approximated in a non-
continuous, discrete form based on the set of particles. In this case
the function is interpolated at a particle (a) where a summation
is performed over all the particles that fall within its region of
compact support, as defined by the smoothing length h

F(ra) ≈


b

F(rb)W (ra − rb, h)∆vb (2)

where ∆vb is the volume of a neighbouring particle (b). If ∆vb =

mb/ρb, with m and ρ being the mass and the density of particle b
respectively then Eq. (2) becomes

F(ra) ≈


b

F(rb)
mb

ρb
W (ra − rb, h). (3)

2.1. The smoothing kernel

Performance of an SPH model depends heavily on the choice
of the smoothing kernel. Kernels are expressed as a function of the
non-dimensional distance between particles (q), given by q = r/h,
where r is the distance between any two given particles a and b and
the parameter h (the smoothing length) controls the size of the area
around particle a in which neighbouring particles are considered.
Within DualSPHysics, the user is able to choose from one of the
following kernel definitions:
(a) Cubic spline

W (r, h) = αD


1 −

3
2
q2 +

3
4
q3 0 ≤ q ≤ 1

1
4

(2 − q)3 1 ≤ q ≤ 2
0 q ≥ 2

(4)

where αD is equal to 10/7πh2 in 2-D and 1/πh3 in 3-D.
The tensile correction method, proposed by Monaghan [29], is

only actively used in the cases of a kernel whose first derivative
goes to zero with the particle distance q.
(b) Quintic [30]

W (r, h) = αD


1 −

q
2

4
(2q + 1) 0 ≤ q ≤ 2 (5)

where αD is equal to 7/4πh2 in 2-D and 21/16πh3 in 3-D.
In the text that follows, only kernels with an influence domain

of 2h (q ≤ 2) are considered.

2.2. Momentum equation

The momentum conservation equation in a continuum is

dv
dt

= −
1
ρ

∇P + g + Γ (6)

where Γ refers to dissipative terms and g is gravitational accelera-
tion. DualSPHysics offers different options for including the effects
of dissipation.

2.2.1. Artificial viscosity
The artificial viscosity scheme, proposed byMonaghan [25], is a

common method within fluid simulation using SPH due primarily
to its simplicity. In SPH notation, Eq. (6) can be written as

dva
dt

= −


b

mb


Pb
ρ2
b

+
Pa
ρ2
a

+ Πab


∇aWab + g (7)

where Pk and ρk are the pressure and density that correspond to
particle k (as evaluated at a or b). The viscosity term Πab is given
by

Πab =


−α cabµab

ρab
vab · rab < 0

0 vab · rab > 0
(8)

where rab = ra − rb and vab = va − vb with rk and vk being the
particle position and velocity respectively. µab = hvab · rab/(r2ab +

η2), cab = 0.5(ca + cb) is the mean speed of sound, η2
= 0.01h2

and α is a coefficient that needs to be tuned in order to introduce
the proper dissipation.

2.2.2. Laminar viscosity and Sub-Particle Scale (SPS) turbulence
Laminar viscous stresses in the momentum equation can be

expressed as [31]
υ0∇

2v

a =


b

mb


4υ0rab · ∇aWab

(ρa + ρb)(r2ab + η2)


vab (9)

where υo is kinematic viscosity (typically 10−6 m2 s for water). In
SPH discrete notation this can be expressed as

dva
dt

= −


b

mb


Pb
ρ2
b

+
Pa
ρ2
a


∇aWab

+ g +


b

mb


4υ0rab · ∇aWab

(ρa + ρb)(r2ab + η2)


vab. (10)

The concept of the Sub-Particle Scale (SPS) was first described
by [32] to represent the effects of turbulence in their Moving
Particle Semi-implicit (MPS) model. The momentum conservation
equation is defined as

dv
dt

= −
1
ρ

∇P + g + υ0∇
2v +

1
ρ

∇ · τ⃗ (11)

where the laminar term is treated as per Eq. (9) and τ⃗ repre-
sents the SPS stress tensor. Favre-averaging is needed to account
for compressibility in weakly compressible SPH [4] where eddy
viscosity assumption is used to model the SPS stress tensor with
Einstein notation for the shear stress component in directions i
and j τ⃗ij

ρ
= νt


2Sij − 2

3kδij


−
2
3CI∆

2δij
Sij2, where τ⃗ij is the sub-

particle stress tensor, vt = [(CS∆l)]2 |S| the turbulent eddy vis-
cosity, k the SPS turbulence kinetic energy, Cs the Smagorinsky
constant (0.12), CI = 0.0066,∆l the particle to particle spacing and
|S| = 0.5(2SijSij) where Sij is an element of the SPS strain tensor.
Dalrymple andRogers [4] introduced SPS intoweakly compressible
SPH using Favre averaging, Eq. (11) can be re-written as

dva
dt

= −


b

mb


Pb
ρ2
b

+
Pa
ρ2
a


∇aWab + g

+


b

mb


4υ0rab · ∇aWab

(ρa + ρb)(r2ab + η2)


vab

+


b

mb


τ⃗ b
ij

ρ2
b

+
τ⃗ a
ij

ρ2
a


∇aWab (12)

2.3. Continuity equation

Throughout the duration of a weakly-compressible SPH simu-
lation (as presented herein) the mass of each particle remains con-
stant and only their associated density fluctuates. These density
changes are computed by solving the conservation of mass, or con-
tinuity equation, in SPH form:

dρa

dt
=


b

mbvab · ∇aWab. (13)

A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216 207
Within DualSPHysics it is also possible to apply a delta-SPH for-
mulation, that introduces a diffusive term [33] to reduce density
fluctuations

dρa

dt
=


b

mbvab · ∇aWab + 2δh

b

mbcab

×


ρa

ρb
− 1


1

r2ab + η2
· ∇aWab (14)

where cab = 0.5(ca + cb) and η2
= 0.01 h2 and δ is the delta-SPH

coefficient. This technique is designed to filter relatively largewave
numbers from the density field while solving for the conservation
of mass of each particle, therefore reducing noise throughout the
system of particles. The term can be expanded into a first and sec-
ond order contributions, where the second order corresponds to its
diffusive nature and the first order is approximately zero if the ker-
nel is complete [34]. However, at open boundaries, where a non-
complete interpolation kernel is inevitably present, the first order
term originates a net contribution. For this reason, it is advised that
the delta-SPHscheme is disabled for cases that rely on hydrostatic
equilibrium. If the case represents a very dynamic situation the
term contributes with a force that may be several orders of magni-
tude smaller than the pressure and viscous terms, not contributing
to a significant degradation of the solution. A delta-SPH (δ) coeffi-
cient of 0.1 is recommended for most applications.

2.4. Equation of state

Following the work of Monaghan [35], the fluid in the SPH for-
malism defined in DualSPHysics is treated as weakly compress-
ible and an equation of state is used to determine fluid pressure
based on particle density. The compressibility is adjusted so that
the speed of sound can be artificially lowered; this means that the
size of time step taken at any one moment (which is determined
according to a Courant condition, based on the currently calculated
speed of sound for all particles) can be maintained at a reasonable
value. Such adjustment however, restricts the sound speed to be
at least ten times faster than the maximum fluid velocity, keeping
density variations to within less than 1%, and therefore not intro-
ducingmajor deviations froman incompressible approach. Follow-
ing [36,37], the relationship between pressure and density follows
the expression

P = B


ρ

ρ0

γ

− 1


(15)

where γ = 7, B = c20ρ0/γ where ρ0 = 1000 kg m−3 is the refer-
ence density and co = c (ρo) =

√
(∂P/∂ρ)


ρo

which is the speed
of sound at the reference density.

2.5. Particle motion

Particles are moved according to a method proposed by Mon-
aghan and referred to as XSPH [38]. This aims to move particles
with a velocity close to the average of the velocity of all particles
in their neighbourhood in order to assure a more ordered flow and
to prevent penetration between continua, particles are therefore
moved using

dra
dt

= va + ε

b

mb

ρab
vbaWab (16)

where ε is a problem specific parameter ranging from 0 to 1 and
ρab = 0.5(ρa + ρb).
2.6. Shepard filter

The Shepard filter is a correction to the density field that can be
applied everyM time steps according to the following procedure

ρnew
a =


b

ρbW̃ab
mb

ρb
=


b

mbW̃ab (17)

where the kernel has been corrected using a zeroth-order correc-
tion

W̃ab =
Wab

b
Wab

mb
ρb

. (18)

In cases where the delta-SPH method is in use, it may not be sensi-
ble to apply the Shepard density filter aswell, however it is possible
for both methods to be used simultaneously within DualSPHysics.
The frequency M that the filter is applied is a free parameter that
can be set to between 1 and an unbounded upper limit; however
it is recommended that the value is set to between 30 and 40 time
steps.

2.7. Time stepping

DualSPHysics includes a choice of numerical integration
schemes, if the momentum (va), density (ρa) and position (ra)
equations are first written in the form

dva
dt

= Fa (19a)

dρa

dt
= Da (19b)

dra
dt

= va (19c)

where va may also include an XSPH correction when these equa-
tions are integrated in time using a computationally simple Verlet
based scheme or a more numerically stable but computationally
intensive two-stage Symplectic method.

2.7.1. Verlet scheme
This algorithm, which is based on the common Verlet method

[39] is split into two parts and benefits from providing a low
computational overhead compared to some other integration
techniques, primarily as it does not require multiple (i.e. predictor
and corrector) calculations for each step. The predictor step
calculates the variables according to

vn+1
a = vn−1

a + 2∆tF n
a ; rn+1

a = rna + ∆tV n
a + 0.5∆t2F n

a ;

ρn+1
a = ρn−1

a + 2∆tDn
a

(20)

where F n
a and Dn

a are calculated using Eq. (7) (or Eq. (12)) and
Eq. (13) (or Eq. (14)) respectively.

However, once every Ns time steps (where Ns ≈ 50 is sug-
gested), variables are calculated according to

vn+1
a = vn

a + ∆tF n
a ; rn+1

a = rna + ∆tV n
a + 0.5∆t2F n

a ;

ρn+1
a = ρn

a + ∆tDn
a.

(21)

This second part is designed to stop divergence of integrated val-
ues through time as the equations are no longer coupled. In cases
where the Verlet scheme is used but it is found that numerical
stability is an issue, it may be sensible to increase the frequency
at which the second part of this scheme is applied, however if it
should be necessary to increase this frequency beyond Ns = 10
then this could indicate that the scheme is not able to capture the
dynamics of the case in hand suitably and the Symplectic scheme
should be used instead.

208 A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216
2.7.2. Symplectic scheme
Symplectic integration algorithms are time reversible in the

absence of friction or viscous effects [40]. They can also preserve
geometric features, such as the energy time-reversal symmetry
present in the equations of motion, leading to improved resolution
of long term solution behaviour. The scheme used here is an
explicit second-order Symplectic scheme with an accuracy in time
of O(∆t2) and involves a predictor and corrector stage.

During the predictor stage the values of acceleration and
density are estimated at the middle of the time step according to

r
n+ 1

2
a = rna +

∆t
2

vn
a ; ρ

n+ 1
2

a = ρn
a +

∆t
2

Dn
a (22)

where the superscript n denotes the time step and t = n∆t .

During the corrector stage dv
n+ 1

2
a /dt is used to calculate the

corrected velocity, and therefore position, of the particles at the
end of the time step according to

vn+1
a = v

n+ 1
2

a +
∆t
2

F
n+ 1

2
a ,

rn+1
a = r

n+ 1
2

a +
∆t
2

vn+1
a

(23)

and finally the corrected value of density dρn+1
a /dt = Dn+1

a is
calculated using the updated values of vn+1

a and rn+1
a [27].

2.7.3. Variable time step
With explicit time integration schemes the time step is depen-

dent on the Courant–Friedrich–Levy (CFL) condition, the forcing
terms and the viscous diffusion term. A variable time step ∆t is
calculated according to [41] using

∆t = 0.3 · min(∆tf , ∆tcv)
∆tf = min


h/ |fa|


a

(24)

∆tcv = min
a

h

cs + max
b

 hvab·rab
(r2ab+η2)


where∆tf is based on the force per unit mass (|f|)a, and∆tcv com-
bines the Courant and the viscous time step controls.

2.8. Boundary conditions

In DualSPHysics, the boundary is described by a set of particles
that are considered as a separate set to the fluid particles. The soft-
ware currently provides functionality for solid impermeable and
periodic open boundaries. Methods to allow boundary particles to
be moved according to fixed forcing functions are also present.

2.8.1. Dynamic Boundary Condition
The Dynamic Boundary Condition (DBC) is the default method

provided by DualSPHysics [42]. This method sees boundary par-
ticles that satisfy the same equations as fluid particles, however
they do notmove according to the forces exerted on them. Instead,
they remain either fixed in position or move according to an im-
posed/assigned motion function (i.e. moving objects such as gates
or wave-makers).

When a fluid particle approaches a boundary and the distance
between its particles and the fluid particle becomes smaller
than twice the smoothing length (h), the density of the affected
boundary particles increases, resulting in a pressure increase. In
turn this results in a repulsive force being exerted on the fluid
particle due to the pressure term in the momentum equation.
Stability of this method relies on the length of time step taken
being suitably short in order to handle the highest present velocity
of any fluid particles currently interacting with boundary particles
and is therefore an important point when considering how the
variable time step is calculated.

2.8.2. Periodic open boundary condition
DualSPHysics provides support for open boundaries in the form

of a periodic boundary condition. This is achieved by allowing
particles that are near an open lateral boundary to interact with
the fluid particles near the complimentary open lateral boundary
on the other side of the domain.

In effect, the compact support kernel of a particle is clipped by
the nearest open boundary that it is nearest to and the remainder of
its clipped support applied at the complimentary open boundary.

2.8.3. Pre-imposed boundary motion
Within DualSPHysics it is possible to define a pre-imposed

movement for a set of boundary particles. Various predefined
movement functions are available as well as the ability to assign
a time-dependent input file containing kinematic detail.

These boundary particles behave as DBC described in Sec-
tion 2.8.1, however rather than being fixed, they move indepen-
dently of the forces currently acting upon them. This provides the
ability to define complex simulation scenarios (i.e. a wave-making
paddle) as the boundaries influence the fluid particles appropri-
ately as they move.

2.8.4. Fluid-driven objects
It is also possible to derive the movement of an object by con-

sidering its interaction with fluid particles and using these forces
to drive itsmotion. This can be achieved by summing the force con-
tributions for an entire body. By assuming that the body is rigid, the
net force on each boundary particle is computed according to the
sum of the contributions of all surrounding fluid particles accord-
ing to the designated kernel function and smoothing length. Each
boundary particle k therefore experiences a force per unit mass
given by

fk =


a∈WPs

fka (25)

where fka is the force per unit mass exerted by the fluid particle a
on the boundary particle k, which is given by

mkfka = −mafak. (26)

For the motion of the moving body, the basic equations of rigid
body dynamics can then be used

M
dV
dt

=


k∈BPs

mkfk (27a)

I
dΩ
dt

=


k∈BPs

mk (rk − R0) × fk (27b)

where M is the mass of the object, I the moment of inertia, V the
velocity, Ω the rotational velocity and R0 the centre of mass. Eqs.
(27a) and (27b) are integrated in time in order to predict the values
of V and Ω for the beginning of the next time step. Each boundary
particle within the body then has a velocity given by

uk = V + Ω × (rk − R0) . (28)

Finally, the boundary particles within the rigid body are moved
by integrating Eq. (28) in time. The work of [27,43] show that this
technique conserves both linear and angular momenta.

A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216 209
3. CPU and GPU implementations

The DualSPHysics code is the result of an optimised imple-
mentation that uses good practice approaches for CPU and GPU
SPH computation, with simulation accuracy, reliability and numer-
ical robustness given precedence over computational performance
where necessary. SPH software frameworks (such asDualSPHysics)
can be split into three main steps; (i) neighbour list, (ii) computa-
tion of forces between particles and solving momentum and con-
tinuity equations and (iii) update of the physical quantities at the
next time step using an integration scheme. Running a simulation
therefore means executing these steps in an iterative manner:

1st STEP. Neighbour list (Cell-linked list described in [44] and
developed by [45]):

- Domain is divided in square cells of side 2 h (or the size of the
kernel domain).

- Only a list of particles, ordered according to the cell to which
they belong, is generated.

- All the arrays with the physical variables of the particles are
reordered according the list of particles.

- Note that an actual neighbour list is not created, but instead a
list of particles reordered according to the cell they belong to,
which facilitates the identification of real neighbours during the
next step.

2nd STEP. Particle interaction:

- Particles of the same cell and adjacent cells are candidates to be
neighbours.

- Each particle interacts with all its neighbouring particles (at a
distance <2 h) solving momentum and continuity equation.

3rd STEP. System update:

- New time step is computed.
- Physical quantities are updated in the next step starting from
the values of physical variables at the present time step, the
interaction forces and the new time step value.

- Particle information (velocity and density) are saved on local
storage (the hard drive) at defined times.

The GPU implementation is initially focused on the force compu-
tation as this is the most consuming part in terms of runtime [44].
The most efficient technique has been found to be to minimise
communication between the CPU and GPU, as the PCI-Express bus
used by current GPU hardware is the slowest point in the com-
puting infrastructure. If the neighbour list and system update are
also implemented on the GPU a CPU–GPUmemory transfer is only
needed at the beginning of the simulation, while relevant data will
be transferred to the CPU only when saving output data is required
(usually infrequently). Hence, the three steps (Neighbour list, Par-
ticle interaction and System update) were implemented entirely
on the GPU to minimise CPU–GPU data transfer. Crespo et al. [12]
showed results of this implementation in the DualSPHysics code
where the executionswere performed entirely on theGPU to simu-
late a benchmark case of a dam break impacting on obstacle where
the numerical results are in close agreementwith the experimental
results.

The GPU and CPU version of the code are optimised differently
to exploit the characteristics of the two architectures. The main
difference is the manner in which parallel execution is performed.
For example, for all loops regarding particle interactions the GPU
model utilises one thread of execution to compute the resulting
force of one particle as it performs all interactions with its neigh-
bours. In the CPU code however symmetry of particle interaction is
exploited in order to reduce runtime. This optimisation is not ap-
plied in the GPU implementation as there is no efficient solution
to avoid typical parallel problems such as memory race conditions
arising from using slightly faster but naïve approaches of assuming
one particle per thread.

DualSPHysics is unique in that the same application can be
run using either a CPU or GPU implementation; this facilitates
the use of the code not only on workstations with a CUDA
enabled NVIDIA GPU but also on machines with suitable CPU
processing hardware. The main code has a common core for both
the CPU and GPU implementations, with only minor source code
differences implemented for the two devices applying the specific
optimisations for CPU and GPU. This commonality ensures that
debugging or maintenance of the code is easier and comparisons
of results and computational time are more direct. It is important
to note that the CPU and GPU versions of the code may produce
results that exhibit minor differences given the same initial case.
This is due to the fact that parallel operations may be performed
in different orders, which, with floating point arithmetic, can lead
to differences in the final few decimal digits. Also the use of
different hardware can lead to small differences when IEEE-754 is
not fully supported. This effect is common to parallel codes and
is an expected phenomenon that should be kept in mind when
comparing results obtained using different computing hardware.
Fig. 1 shows a flow diagram to represent the differences between
the CPU andGPU implementations and the different steps involved
in a complete execution.

4. Program documentation

4.1. Source files

A set of C++ and CUDA files need to be compiled to generate the
DualSPHysics binary. Here all the source files are listed, however
each file contains more detailed comments describing the SPH
formulation and the algorithms. As mentioned before, the same
application can be run using either a CPU or GPU implementation;
therefore some files are common for the SPH solver while others
are specific to CPU or GPU executions. Table 1 shows a general
overview of the different source files integrated in the project.

The following tables show the goal of each individual file;
Table 2 describes the files not related to the SPH solver; Table 3
describes the files of the SPH solver common to CPU and GPU
implementations; and Tables 4 and 5 describe the files for the
specific execution on CPU and GPU, respectively.

Please note that both the C++ and CUDA version of the code
contain the same features and options. Most of the source code is
common to CPU and GPU (files in Tables 2 and 3).

4.2. Compilation

The code can be compiled for either CPU or GPU execution. In
order to compile the code for CPU execution, only a C++ compiler
(for example GNU’s g++) is needed with the resultant binary
allowing the code to be run on workstations without a CUDA-
enabled GPU.

To run DualSPHysics on GPU, an NVIDIA CUDA-enabled GPU is
needed and the latest version of the GPU driver must be installed.
However, to compile the source code, the GPU programming lan-
guage CUDA and NVCC compiler must be installed on the com-
puter. The CUDA Toolkits can be downloaded directly fromNVIDIA
(https://developer.nvidia.com/cuda-downloads). CUDA versions
4.0, 4.1, 4.2, 5.0, and 5.5 have been tested (the same numerical re-
sults are obtained with different CUDA versions).
Makefiles can be used to compile the code:

(i) make –fMakefile_cpu only for CPU compilation (files of Table 5
are not included in the compilation) leading to the binary
DualSPHysicsCPU_linux64.

https://developer.nvidia.com/cuda-downloads

210 A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216
Fig. 1. Flow diagram of the CPU (left) and total GPU implementation (right).
Table 1
List of source files of DualSPHysics code.
No SPH SPH on CPU & GPU
Functions (.h .cpp) main.cpp
JException (.h .cpp) JCfgRun (.h .cpp)
JFloatingData (.h .cpp) JSph (.h .cpp)
JLog2 (.h .cpp) JPartsLoad (.h .cpp)
JObject (.h .cpp) JPartsOut (.h .cpp)
JObjectGpu (.h .cpp) JSphDtFixed (.h .cpp)
JPartData (.h .cpp) JSphVarAcc (.h .cpp)
JPtxasInfo (.h .cpp) Types.h
JSpaceCtes (.h .cpp) SPH on CPU SPH on GPU
JSpaceEParms (.h .cpp)
JSpaceParts (.h .cpp) JSphCpu (.h .cpp) JSphGpu (.h .cpp)
JSpaceProperties (.h .cpp) JSphGpu_ker (.h.cu)
JRangeFilter (.h .cpp)
JTimer.h JSphCpuSingle (.h .cpp) JSphGpuSingle (.h .cpp)
JTimerCuda.h
JVarsAscii (.h .cpp) JSphTimersGpu.h JSphTimersCpu.h
TypesDef.h JCellDivGpuSingle (.h .cpp) JCellDivCpu (.h .cpp)

JCellDivGpuSingle_ker (.h.cu)
JFormatFiles2.h
JFormatFiles2.lib / libjformatfiles2.a JCellDivCpuSingle (.h .cpp) JCellDivGpuSingle (.h .cpp)

JCellDivGpuSingle_ker (.h.cu)
JSphMotion.h
JSphMotion.lib / libjsphmotion.a JPeriodicGpu (.h .cpp) JPeriodicCpu (.h .cpp)

JPeriodicGpu_ker (.h.cu)
JXml.h
JXml.lib / libjxml.a

JGpuArrays (.h .cpp)
(ii) make –f Makefile for a full compilation creating a binary for
CPU–GPU and the result of the compilation is the binary
DualSPHysics_linux64.

The user can modify the compilation options such as the path
of the CUDA toolkit directory or the GPU architecture. By de-
fault the GPU code is compiled for ‘‘sm_12,compute_12’’ and
‘‘sm_20,compute_20’’ and CUDA v5.0, the log file generated by the
compiler is stored in the file DualSPHysics_ptxasinfo. For example,
anypossible error in the compilation of JSphGpu_ker.cu canbe iden-
tified in this ptxasinfo file. This file is also parsed by the executable
on initial startup in order to perform hardware specific kernel op-
timisation.

4.3. Format files

Different format files for the input and the output data are
involved in the DualSPHysics execution: .xml, .bi2 and .vtk.
The XML (EXtensibleMarkup Language) is a textual data format
that can easily be read or written using any platform and operating
system. It is based on a set of labels (tags) that organise the
information and can be loaded orwritten easily using any standard
text or dedicated XML editor. This format is used for input files for
the code.

Data stored in text format (ASCII) consumes at least six times
morememory than the same data stored in binary format. Reading
and writing data in ASCII is computationally more expensive than
using binary (this can be as high as two orders of magnitude).
As DualSPHysics allows simulations to be performed with a large
number of particles, a binary file format is necessary to avoid
these problems. The use of a binary format reduces the stored
size of the files and also the time dedicated to generating them.
The format used in DualSPHysics is named BINX2 (.bi2), these files
contain only the meaningful information of particle properties.
Some variables are removed, e.g. the pressure is not stored since

A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216 211
Table 2
List of source files of DualSPHysics code not related to the SPH solver.

Non SPH FILES

Functions (.h .cpp) Declares/implements basic/general functions for the entire application.
JException (.h .cpp) Declares/implements the class that defines exceptions with the information of the class and method.
JFloatingData (.h .cpp) Declares/implements the class that allows reading/writing files with data of floating bodies.
JLog2 (.h .cpp) Declares/implements the class that manages the output of information in the file Run.out and on screen.
JObject (.h .cpp) Declares/implements the class that defines objects with methods that throws exceptions.
JObjectGpu (.h .cpp) Declares/implements the class that defines objects with methods that throws exceptions about tasks in GPU.
JPartData (.h .cpp) Declares/implements the class that allows reading/writing files with data of particles in formats binx2, ascii. . .
JPtxasInfo (.h .cpp) Declares/implements the class that returns the number of registers of each CUDA kernel.
JSpaceCtes (.h .cpp) Declares/implements the class that manages the info of constants from the input XML file.
JSpaceEParms (.h .cpp) Declares/implements the class that manages the info of execution parameters from the input XML file.
JSpaceParts (.h .cpp) Declares/implements the class that manages the info of particles from the input XML file.
JSpaceProperties (.h .cpp) Declares/implements the class that manages the properties assigned to the particles in the XML file
JRangeFilter (.h .cpp) Declares/implements the class that facilitates filtering values within a list.
JTimer.h Declares the class that defines a class to measure short time intervals.
JTimerCuda.h Declares the class that defines a class to measure short time intervals in GPU using cudaEvent.
JVarsAscii (.h .cpp) Declares/implements the class that reads variables from a text file in ASCII format.
TypesDef.h Declares general types and functions for the entire application.
JFormatFiles2.h Declares the class that provides functions to store particle data in formats VTK, CSV, ASCII.
JSphMotion.h Declares the class that provides the displacement of moving objects during a time interval.
JXml.h Declares the class that helps to manage the XML document using library TinyXML
Table 3
List of source files of DualSPHysics code for the SPH execution.

SPH SOLVER

main.cpp Main file of the project that executes the code on CPU or GPU.
JCfgRun (.h .cpp) Declares/implements the class that defines the class responsible of collecting the execution parameters by command line.
JSph (.h .cpp) Declares/implements the class that defines all the attributes and functions that CPU and GPU simulations share.
JPartsLoad (.h .cpp) Declares/implements the class that manages the initial load of particle data.
JPartsOut (.h .cpp) Declares/implements the class that stores excluded particles at each instant till writing the output file.
JSphDtFixed (.h .cpp) Declares/implements the class that manages the use of prefixed values of DT loaded from an input file.
JSphVarAcc (.h .cpp) Declares/implements the class that manages the application of external forces to different blocks of particles (with the same MK).
Types.h Defines specific types for the SPH application.
Table 4
List of source files of DualSPHysics code for the SPH execution on CPU.

SPH solver only for CPU executions

JSphCpu (.h .cpp) Declares/implements the class that defines the attributes and functions used only in CPU simulations.
JSphCpuSingle (.h .cpp) Declares/implements the class that defines the attributes and functions used only in Single-CPU.
JSphTimersCpu.h Measures time intervals during CPU execution.
JCellDivCpu (.h .cpp) Declares/implements the class responsible of computing the Neighbour List in CPU.
JCellDivCpuSingle (.h .cpp) Declares/implements the class responsible of computing the Neighbour List in Single-CPU
JPeriodicCpu (.h .cpp) Declares/implements the class that manages the interactions between periodic edges in CPU
Table 5
List of source files of DualSPHysics code for the SPH execution on GPU.

SPH solver only for GPU executions

JSphGpu (.h .cpp) Declares/implements the class that defines the attributes and functions used only in GPU simulations.
JSphGpu_ker (.h.cu) Declares/implements functions and CUDA kernels for the particle interaction and system update.
JSphGpuSingle (.h .cpp) Declares/implements the class that defines the attributes and functions used only in Single-GPU.
JSphTimersGpu.h Measures time intervals during GPU execution.
JCellDivGpu (.h .cpp) Declares/implements the class that defines the class responsible of computing the Neighbour List in GPU.
JCellDivGpu_ker (.h.cu) Declares/implements functions and CUDA kernels to compute operations of the Neighbour List.
JCellDivGpuSingle (.h .cpp) Declares/implements the class that defines the class responsible of computing the Neighbour List in Single-GPU.
JCellDivGpuSingle_ker (.h.cu) Declares/implements functions and CUDA kernels to compute operations of the Neighbour List.
JPeriodicGpu (.h .cpp) Declares/implements the class that manages the interactions between periodic edges in GPU.
JPeriodicGpu_ker (.h.cu) Declares/implements functions and CUDA kernels to obtain particles that interact with periodic edges.
JGpuArrays (.h .cpp) Declares/implements the class that manages arrays with memory allocated in GPU.
it can be calculated starting from the density using the equation
of state as a pre-processing step. The value for mass is constant
for fluid and boundary particles and so only two values are used
instead of an array. The position of fixed boundary particles is only
stored in the first file since they remain unchanged throughout the
simulation. Data for particles that leave the limits of the domain
are stored in an independent file which leads to an additional
saving. Hence, the advantages of BINX2 can be summarised as: (i)
memory storage reduction, (ii) fast access, (iii) no precision lost and
(iv) portability (i.e. to different architectures or different operating
systems).

VTK (Visualisation ToolKit) files are used for final visualisation
of the results and can either be generated as a pre-processing
step or output directly by DualSPHysics instead of the standard
BINX format (albeit at the expense of computational overhead).
VTK not only supports the particle positions, but also physical
quantities that are obtained numerically for the particles involved
in the simulations. VTK supports many data types, such as scalar,

212 A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216
Table 6
List of execution parameters of DualSPHysics.

Parameter Description

-h Shows information about parameters.
-opt <file> Loads configuration from a file.
-cpu Execution on Cpu (option by default).
-gpu[:id] Execution on Gpu and id of the device.
-stable Ensures the same results when repeated a simulation since operations are always carried out in the same order.
-ompthreads:<int> Only for Cpu. Indicates the number of threads by host for parallel execution, it takes the number of cores of the device by default

(or using zero value).
-ompdynamic Only for Cpu. Parallel execution with symmetry in interaction and dynamic load balancing. Not compatible with –stable.
-ompstatic Only for Cpu. Parallel execution with symmetry in interaction and static load balancing.
-cellorder:<axis> Indicates the order of the axis. (xyz/xzy/yxz/yzx/zxy/zyx).
-cellmode:<mode> Specifies the cell division mode, by default, the fastest mode is chosen

h fastest and the most expensive in memory
2h lowest and the least expensive in memory

-symplectic Symplectic algorithm as time step algorithm.
-verlet[:steps] Verlet algorithm as time step algorithm and number of time steps to switch equations.
-cubic Cubic spline kernel.
-wendland Wendland kernel.
-viscoart:<float> Artificial viscosity [0-1].
-viscolamsps:<float> Laminar+SPS viscosity [order of 1E-6].
-shepard:steps Shepard filter and number of steps to be applied.
-deltasph:<float> Constant for DeltaSPH. By default 0.1 and 0 to disable.
-sv:[formats, . . .] Specifies the output formats:

none No files with particle data are generated
binx Binary files (option by default)
vtk VTK files
ascii ASCII files (PART_xxxx of SPHysics)
csv CSV files

-svres:<0/1> Generates file that summarises the execution process.
-svtimers:<0/1> Obtains timing for each individual process.
-svdomainvtk:<0/1> Generates VTK file with domain limits.
-name <string> Specifies path and name of the case.
-runname <string> Specifies name for case execution.
-dirout <dir> Specifies the output directory.
-partbegin:begin[:first] dir RESTART option. Specifies the beginning of the simulation starting from a given PART (begin) and located in the directory (dir),

(first) indicates the number of the first PART to be generated.
-incz:<float> Allowable increase in Z+ direction. Case domain is fixed as function of the initial particles, however the maximum Z position can be

increased with this option in case particles reach higher positions.
-rhopout:min:max Excludes fluid particles out of these density limits.
-ftpause:<float> Time to start floating bodies movement. By default 0.
-tmax:<float> Maximum time of simulation.
-tout:<float> Time between output files.
-ptxasfile <file> Indicates the file with information about the compilation kernels in CUDA to adjust the size of the blocks depending on the needed

registers for each kernel (only for gpu). By default, it takes the path and the name of the executable +_ptxasinfo.
vector, tensor, texture, and also supports different algorithms such
as polygon reduction, mesh smoothing, cutting, contouring and
Delaunay triangulation. The VTK file format consists of a header
that describes the data and includes any other useful information,
the dataset structure with the geometry and topology of the
dataset and its attributes. Here VTK files of POLYDATA type with
legacy-binary format is used. This format is also easy for read–write
operations.

4.4. Running DualSPHysics

The input files to run the DualSPHysics code include one XML
file (Case.xml) and a binary file (Case.bi2). Case.xml contains all the
parameters of the system configuration and its execution, such
as key variables (i.e. smoothing length, reference density, gravity,
coefficient to calculate pressure, speed of sound), the number of
particles in the system,movement definition ofmoving boundaries
and properties of moving bodies. The binary file Case.bi2 contains
the initial particle data; arrays of position, velocity and density
and headers. The output files of DualSPHysics consist of binary
format files (by default) with the particle information at different
instants of the simulation: Part0000.bi2, Part0001.bi2, Part0002.bi2
. . . , PartOut.bi2 with excluded particles and Run.out with a brief
description of the simulation.

Different execution parameters can be changed in the XML file:
time stepping algorithm specifying Symplectic or Verlet, choice of
kernel function which can be Cubic or Wendland, the value for ar-
tificial viscosity or laminar+SPS viscosity treatment, activation of
the Shepard density filter and how often it is applied, activation
of the delta-SPH correction, the maximum time of simulation and
time intervals to save the output data. To run the code, it is also
necessary to specify whether the simulation is going to run in CPU
or GPU mode, the format of the output files, files that summarise
the execution process with the computational time of each indi-
vidual process. For CPU executions, a multi-core implementation
using OpenMP enables executions in parallel using the different
cores of themachine. It takes themaximum number of cores of the
device by default or users can specify the number used. In addition,
the parallel execution with OpenMP can use dynamic or static load
balancing.

To run the program, type the command ./DualSPHysics_linux64
Case [options], where Case is the name of the input files (Case.xml
and Case.bi2). The configuration of the execution is mostly defined
in the XML file, but it can be also defined or changed using
execution parameters. Furthermore, new options and possibilities
for the execution can be imposed using [options] as seen in Table 6.
For example:

$dualsphysics $dirout/$name $dirout -svres –cpu

enables the simulation on the cpu, where $dirout is the directory
with the file $name.bi2

A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216 213
Fig. 2. Instants of the simulation of a dam-break flow used to study the performance of DualSPHysics code. Colour represents velocity of the particles. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 7
Specifications of different execution devices.

Number of cores Processor clock (GHz) Memory size (GB)

Xeon X5500 1–8 2.67 –
GTX 480 480 1.40 1.5
GTX 680 1536 1.14 2
Tesla K20 2496 0.71 5
GTX Titan 2688 0.88 6
$dualsphysics $dirout/$name $dirout -svres –gpu
enables the same simulation on the gpu.
$dualsphysics $dirout/$name $dirout -svres –gpu –partbegin:69
restarts the simulation from the time corresponding to files output
Part0069.bi2.

5. Performance analysis

The efficiency and performance of DualSPHysics are analysed
in this section. The same case of study is executed in different
devices (CPU and different GPUs) and runtimes and speedups are
presented.

The test case consists of a dam break problem confined within
a rectangular box 160 cm long, 67 cm wide and 40 cm high. The
volume of water initially contained behind a thin gate at one end
of the box is 40 cm long×67 cm×30 cmhigh. A tall structure,which
is 12 cm × 12 cm × 45 cm in size, is placed 50 cm downstream of
the gate and 24 cm from the nearest sidewall of the tank. A physical
time of 1.5 s is calculated. Different instants of the simulation can
be observed in Fig. 2.

A validation of DualSPHysics using this test case has already
been shown in [13] where experimental forces exerted onto the
structure were in good agreement with the numerical values.
This case is executed using the Intel Xeon X5500 CPU and using
different GPUs (NVIDIAs GTX 480, GTX 680, GTX Titan and Tesla
K20) whose general specifications are summarised in Table 7.

The performance of different simulations of the same case is
presented for 1.5 s of physical time. The performance is analysed
for different resolutions by running calculations with different
numbers of particles. Computational times of the executions on
CPU and GPU are shown in Fig. 3 where it can be noticed that for a
simulation of 3million particles takes one hour using the GTX Titan
GPU card while it takes almost 2 days using a CPU.

This important acceleration of the code using the new GPU
technology can also be observed in Fig. 4, where the speedups of
different GPUs are shown by comparing their performance against
the CPU device using a single core and also the full 8 cores of
the Intel Xeon X5500. For the case chosen here, the use of a GPU
can accelerate the SPH computations by almost two orders of
magnitude, e.g. the GTX Titan card is 149 times faster than the
single core CPU and 24 times faster than the CPU using all 8 cores.

Fig. 5 shows the runtime distribution of the three main SPH
steps; neighbour list (NL) creation, particle interaction (PI) and
system update (SU) when simulating one million particles. The
particle interaction takes 98.5% of the total computational time
when using a CPU single-core and this percentage decreases when
the code is parallelised. Hence PI takes 90% when using the 8 cores

214 A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216
Fig. 3. Runtime for CPU and different GPU cards.

Fig. 4. Speedups of GPU against CPU simulating 1 million particles.

Fig. 5. Computational runtime distribution on CPU and GPU simulating 1 million
particles. Neighbour List corresponds to black bars, Particle Interaction to grey bars
and System Update to the light bar.

of the CPU and it is reduced to 88.3% and 85.7% when using GPU
cards (GTX 480 and GTX Titan, respectively). On the other hand
the percentages of NL and SU increase with the number of cores
to parallelise over.

Finally, Fig. 6 gives an idea of how many particles can be
simulated on the different GPU devices employed when using the
DualSPHysics code. It can be observed that the difference in terms
of speedup between GTX 680 and Tesla K20 is negligible (see
Fig. 4) and the main difference of using these two GPU cards lies
in the memory space that allows simulating more than 28 million
particles in one Tesla K20 while less than the half can be simulated
with a GTX 680.
Fig. 6. Maximum number of particles simulated with different GPU cards using
DualSPHysics code.

Fig. 7. Initial setup of the application case.

6. Applications

DualSPHysics has proven to be efficient and reliable; results
of efficiency have been shown in the previous section and Du-
alSPHysics has also been validated experimentally. These valida-
tions were performed not only computing forces exerted onto a
tall structure [13], but also studying wave propagation, where nu-
merical values of surface elevation are in good agreement with ex-
periments [13], comparing pressures such as in the first validation
of DualSPHysics shown in [12], and computing the run-up in a sea
breakwater [14].

Here, an application that includes some of the functionalities of
DualSPHysics code is presented to demonstrate the capabilities of
the code. Hence, this working example includes:

- bottom and wall of the numerical tank using fixed boundaries
(Section 2.8.1),

- periodic open boundaries at the lateral limits (Section 2.8.2),
- piston wavemaker using predefined motion (Section 2.8.3),
- a boat that behaves as a floating body (Section 2.8.4),
- volume of water that fills the numerical wave basin.

The initial setup is depicted in Fig. 7, where the dimensions of the
numerical tank and the boat are shown. An initial particle distance
of 0.03 m leads to 6714,451 particles (6184,843 fluid particles).
The mass of the floating boat is set to 2102.88 kg and the piston
moves following a sinusoidal movement with frequency of 0.3 Hz
and amplitude of 0.5 m.

Different instants of the simulation using DualSPHysics are
shown in the frames of Fig. 8. The simulation is performed using
the GTX Titan where 6M particles and 10 s of real time take 41 h to
compute.

A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216 215
Fig. 8. Instants of the simulation of the application case to show the capabilities of DualSPHysics code (http://youtu.be/pnLTWUk6wPc?list=UU7I8ftAldTXKAWD6_VxE5Iw).
7. Conclusions and future work

The DualSPHysics code has been developed to study complex
free-surface flows that require high computational resources.
DualSPHysics is an open-source code, redistributed under the
terms of the GNU General Public License as published by the Free
Software Foundation. Along with the source code, documentation
that makes compilation and execution of the source files easy is
also distributed. In addition, working examples are also provided.

The code has been shown to be robust, efficient and reliable.
The parallel power computing of Graphics Computing Units (GPUs)
is used to accelerate DualSPHysics up to two orders of magnitude
when compared to the performance achieved using a serial
version.

The aim of DualSPHysics is two-fold. Firstly the code is a
user-friendly platform designed to encourage other researchers
to use the SPH technique to investigate a large number of novel
CFD problems. Secondly, the method can be used by industry
to simulate real problems that are beyond the scope of classical
models.

New features are constantly being integrated into the DualSPH-
ysis code; current examples include an MPI implementation for
Multi-GPU execution [46], double precision [47], variable parti-
cle resolution [48], multiphase cases (gas–soil–water) [49,50], new
boundary conditions [51]. The code is also being coupled with the
Discrete Element Method [52], with a Mass Point Lattice Spring
Model [53] and hybridised with the SWASH Wave Propagation
Model [54].

Acknowledgements

This work was partially supported by Xunta de Galicia under
project Programa de Consolidación e Estructuración de Unidades
de Investigación Competitivas (Grupos de Referencia Competi-
tiva) co-funded by European Regional Development Fund (FEDER)
and Ministerio de Economía y Competitividad under project
BIA2012-38676-C03-03. The authors gratefully acknowledge the
support of EPSRC EP/H003045/1 and a Research Councils UK
(RCUK) fellowship.

References

[1] M. Gómez-Gesteira, B.D. Rogers, R.A. Dalrymple, A.J.C. Crespo, State-of-the-art
of classical SPH for free-surface flows, J. Hydraulic Res. 48 (2010) 6–27.

[2] M. Gómez-Gesteira, B.D. Rogers, A.J.C. Crespo, R.A. Dalrymple, M.
Narayanaswamy, J.M. Domínguez, SPHysics—development of a free-surface
fluid solver- Part 1: Theory and formulations, Comput. Geosci. 48 (2012)
289–299.

[3] M. Gómez-Gesteira, A.J.C. Crespo, B.D. Rogers, R.A. Dalrymple, J.M. Domínguez,
A. Barreiro, SPHysics—development of a free-surface fluid solver—Part 2:
Efficiency and test cases, Comput. Geosci. 48 (2012) 300–307.

[4] R.A. Dalrymple, B.D. Rogers, Numerical modeling of water waves with the SPH
method, Coastal Eng. 53 (2006) 141–147.

[5] A.J.C. Crespo, M. Gómez-Gesteira, R.A. Dalrymple, Modeling dam break
behavior over a wet bed by a SPH technique, J. Waterway, Port, Coastal Ocean
Eng. 134 (6) (2008) 313–320.

http://youtu.be/pnLTWUk6wPc?list%3DUU7I8ftAldTXKAWD6_VxE5Iw
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref1
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref2
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref3
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref4
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref5

216 A.J.C. Crespo et al. / Computer Physics Communications 187 (2015) 204–216
[6] M. Gómez-Gesteira, R. Dalrymple, Using a 3D SPHmethod for wave impact on
a tall structure, J. Waterway, Port, Coastal Ocean Eng. 130 (2) (2004) 63–69.

[7] B.D. Rogers, R.A. Dalrymple, P.K. Stansby, Simulation of caisson breakwater
movement using SPH, J. Hydraulic Res. 48 (2010) 135–141.

[8] R. Vacondio, B.D. Rogers, P.K. Stansby, P. Mignosa, A correction for
balancing discontinuous bed slopes in two-dimensional smoothed particle
hydrodynamics shallow water modelling, Internat. J. Numer. Methods Fluids
71 (2012) 850–872.

[9] R. Vacondio, B.D. Rogers, P.K. Stansby, P. Mignosa, Shallow water SPH for
flooding with dynamic particle coalescing and splitting, Adv. Water Resour.
58 (2013) 10–23.

[10] A. Herault, G. Bilotta, R.A. Dalrymple, SPH on GPUwith CUDA, J. Hydraulic Res.
48 (2010) 74–79.

[11] J.M. Dominguez, A.J.C. Crespo, M. Gómez-Gesteira, Optimization strategies
for CPU and GPU implementations of a smoothed particle hydrodynamics
method, Comput. Phys. Comm. 184 (3) (2013) 617–627.

[12] A.J.C. Crespo, J.M. Dominguez, A. Barreiro, M. Gómez-Gesteira, B.D. Rogers,
GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed
particle hydrodynamics methods, PLoS ONE 6 (6) (2011) e20685.

[13] A. Barreiro, A.J.C. Crespo, J.M. Domínguez, M. Gómez-Gesteira, Smoothed
particle hydrodynamics for coastal engineering problems, Comput. Struct. 120
(15) (2013) 96–106.

[14] C. Altomare, A.J.C. Crespo, B.D. Rogers, J.M. Domínguez, X. Gironella,M. Gómez-
Gesteira, Numericalmodelling of armour block sea breakwaterwith smoothed
particle hydrodynamics, Comput. Struct. 130 (2014) 34–45.

[15] R. Vacondio, P. Mignosa, S. Pagani, 3D SPH numerical simulation of the wave
generated by the Vajont rockslide, Adv. Water Resour. 59 (2013) 146–156.

[16] J.M. Cherfils, G. Pinon, Rivoalen, JOSEPHINE: A parallel SPH code for free-
surface flows, Comput. Phys. Comm. 183 (7) (2012) 1468–1480.

[17] http://www.gpusph.org/ (accessed 23.07.2014).
[18] http://canal.etsin.upm.es/aquagpusph/ (accessed 23.07.2014).
[19] http://isph.sourceforge.net/ (accessed 23.07.2014).
[20] http://www.mpa-garching.mpg.de/gadget/ (date access 23-07-2014).
[21] https://code.google.com/p/pysph/ (accessed 23.07.2014).
[22] http://www.sph-flow.com/ (accessed 23.07.2014).
[23] http://www.simpartix.com/ (accessed 23.07.2014).
[24] http://www.itm.uni-stuttgart.de/research/pasimodo/pasimodo_en.php (ac-

cessed 23.07.2014).
[25] J.J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astro-

phys. 30 (1992) 543–574.
[26] G.R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method, CRC

Press, 2003.
[27] J.J. Monaghan, Smoothed particle hydrodynamics, Rep. Progr. Phys. 68 (2005)

1703–1759.
[28] D. Violeau, Fluid Mechanics and the SPH Method: Theory and Applications,

Oxford University Press, ISBN: 0199655529, 2012.
[29] J.J. Monaghan, SPH without tensile instability, J. Comput. Phys. 159 (2000)

290–311.
[30] H. Wendland, Piecewiese polynomial, positive definite and compactly

supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995)
389–396.

[31] E.Y.M. Lo, S. Shao, Simulation of near-shore solitary wave mechanics by an
incompressible SPH method, Appl. Ocean Res. 24 (2002) 275–286.

[32] H. Gotoh, T. Shibihara, M. Hayashii, Subparticle-scale model for the MPS
method-lagrangian flow model for hydraulic engineering, Comput. Fluid
Dynam. J. 9 (2001) 339–347.
[33] D. Molteni, A. Colagrossi, A simple procedure to improve the pressure
evaluation in hydrodynamic context using the SPH, Comput. Phys. Comm. 180
(6) (2009) 861–872.

[34] M. Antuono, A. Colagrossi, S. Marrone, Numerical diffusive terms in weakly-
compressible SPH schemes, Comput. Phys. Comm. 183 (2012).

[35] J.J. Monaghan, Simulating free surface flows with SPH, J. Comput. Phys. 110
(1994) 399–406.

[36] J.J. Monaghan, R.A.F. Cas, A.M. Kos, M. Hallworth, Gravity currents descending
a ramp in a stratified tank, J. Fluid Mech. 379 (1999) 39–70.

[37] G.K. Batchelor, Introduction to Fluid Dynamics, Cambridge University Press,
U.K, 1974.

[38] J.J. Monaghan, On the problem of penetration in particle methods, J. Comput.
Phys. 82 (1989) 1–15.

[39] L. Verlet, Computer experiments on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules, Phys. Rev. 159 (1967) 98–103.

[40] B.J. Leimkuhler, S. Reich, R.D. Skeel, Integration Methods for Molecular
Dynamic IMA Volume in Mathematics And Its Application, Springer, 1996.

[41] J.J. Monaghan, A. Kos, Solitary waves on a Cretan beach, J. Waterway, Port
Coastal Ocean Eng. 125 (3) (1999) 145–154.

[42] A.J. Crespo, M. Gómez-Gesteira, R.A. Dalrymple, Boundary conditions gener-
ated by dynamic particles in SPHmethods, CMC: Comput., Mater. Contin. 5 (3)
(2007) 173–184.

[43] J.J. Monaghan, A. Kos, N. Issa, Fluid motion generated by impact, J. Waterway,
Port, Coastal Ocean Eng. 129 (2003) 250–259.

[44] J.M. Dominguez, A.J.C. Crespo, M. Gómez-Gesteira, J.C. Marongiu, Neighbour
lists in smoothed particle hydrodynamics, Internat. J. Numer. Methods Fluids
67 (2011) 2026–2042.

[45] T.J. Purcell, I. Buck, W.R. Mark, P. Hanrahan, Ray tracing on programmable
graphics hardware, ACM Trans. Graphics 21 (3) (2002) 703–712.

[46] J.M. Domínguez, A.J.C. Crespo, D. Valdez-Balderas, B.D. Rogers, M. Gómez-
Gesteira, Newmulti-GPU implementation for smoothedparticle hydrodynam-
ics on heterogeneous clusters, Comput. Phys. Comm. 184 (2013) 1848–1860.

[47] J.M. Domínguez, A.J.C. Crespo, A. Barreiro, M. Gómez-Gesteira, B.D. Rogers,
Efficient implementation of double precision in GPU computing to simulate
realistic cases with high resolution, in: Proceedings of the 9th SPHERIC, 2014.

[48] R. Vacondio, B.D. Rogers, P.K. Stansby, P. Mignosa, J. Feldman, Variable
resolution for SPH: a dynamic particle coalescing and splitting scheme,
Comput. Methods Appl. Mech. Engrg. 256 (2013) 132–148.

[49] G. Fourtakas, B.D. Rogers, D. Laurence, Modelling sediment suspension in
industrial tanks using SPH, La Houille Blanche 2 (2013) 39–45.

[50] A. Mokos, B.D. Rogers, P.K. Stansby, J.M. Domínguez, A multi-phase particle
shifting algorithm for SPH simulations for violent hydrodynamics on a GPU,
in: Proceedings of the 9th SPHERIC, 2014.

[51] G. Fourtakas, J.M. Domínguez, R. Vacondio, A. Nasar, B.D. Rogers, Local
Uniform STencil (LUST) Boundary Conditions for 3-D Irregular Boundaries in
DualSPHysics, in: Proceedings of the 9th SPHERIC, 2014.

[52] R. Canelas, R.M.L. Ferreira, J.M. Domínguez, A.J.C. Crespo, Modelling of wave
impacts on harbour structures and objects with SPH and DEM, in: Proceedings
of the 9th SPHERIC, 2014.

[53] S.M. Longshaw, B.D. Rogers, P.K. Stansby, Whale to turbine impact using the
GPU based SPH-LSM method, in: Proceedings of the 9th SPHERIC, 2014.

[54] C. Altomare, T. Suzuki, J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira,
Coupling between SWASH and SPH for real coastal problems, in: Proceedings
of the 9th SPHERIC, 2014.

http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref6
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref7
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref8
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref9
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref10
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref11
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref12
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref13
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref14
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref15
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref16
http://www.gpusph.org/
http://canal.etsin.upm.es/aquagpusph/
http://isph.sourceforge.net/
http://www.mpa-garching.mpg.de/gadget/
https://code.google.com/p/pysph/
http://www.sph-flow.com/
http://www.simpartix.com/
http://www.itm.uni-stuttgart.de/research/pasimodo/pasimodo_en.php
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref25
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref26
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref27
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref28
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref29
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref30
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref31
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref32
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref33
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref34
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref35
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref36
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref37
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref38
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref39
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref40
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref41
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref42
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref43
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref44
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref45
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref46
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref48
http://refhub.elsevier.com/S0010-4655(14)00339-7/sbref49

	DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH)
	Introduction
	Smoothed Particle Hydrodynamics method
	The smoothing kernel
	Momentum equation
	Artificial viscosity
	Laminar viscosity and Sub-Particle Scale (SPS) turbulence

	Continuity equation
	Equation of state
	Particle motion
	Shepard filter
	Time stepping
	Verlet scheme
	Symplectic scheme
	Variable time step

	Boundary conditions
	Dynamic Boundary Condition
	Periodic open boundary condition
	Pre-imposed boundary motion
	Fluid-driven objects

	CPU and GPU implementations
	Program documentation
	Source files
	Compilation
	Format files
	Running DualSPHysics

	Performance analysis
	Applications
	Conclusions and future work
	Acknowledgements
	References

