XML GUIDE FOR DUALSPHYSICS

Create your own case using the XML file

April 2016

DualSPHysics team

Input \& output files: Format files

Case_Def.xml
Case.xml

XML File

- The eXtensible Markup Language is textual data format compatible with any hardware and software.
- Information is structured and organised by using labels.
- They can be easily edited using any text editor.

BINARY File

Case.bi4

Part_xxxx.bi4 PartOut.obi4

- Binary format consumes six times less memory than text format.
- Reading or writing is several times faster using a binary format.
- A special code is required to read the data (JPartDataBi4.cpp/.h).
- ".bi4" is the new binary format that also includes double precision.
- The user can also define new arrays that post-processing tools can automatic manage.

Input \& output files

Created by the user
Constants and configuration parameters for simulation

Created by GenCase BUT it can also be created by the user


```
    <congtantsdef>
        Clattice bound=""* fluid="1"
```



```
        *)
```



```
    *)
```



```
    <vams value-"7" comment-" Poititropic constant for vater used in the state equation"-/
    </congtantsot:
        <definition dp="0.01" units,coment--motres (m)
        <pointmin x=-1" y="onz="-1"/>
    </definition>
        mmanisot>
            Setdramode mode"-Fol1-
            <draveox>
                Cboxt111)sol1d</boxti11>
                Mpoint x=-0-y=-1+z=0-1/
            </davavoo>
            /daravbox> mk=0" />
            <boxt:112sbottom | left | right | front | back/boxf11)
                <coint x=0- y=-1" z="0
            </main11gt>>>>>
        c/comandmp>
    </gecommy
k/cosecet>
```



```
        Sarameter key=-verletsteps" value="40" comment-"Veriet only: Mumber of steps to apply Eoler timestepping (dofanit-40)" /
```



```
        \,
        <",
        *)
```



```
        M,
```



```
        *)
        *)
        *)
```


<case>
<casedet>
${ }_{\text {<constantadef> }}$

<cfinumber value"" $0.2^{"}$ coment-"Coofficient to moltiply De"
Chsw1 value="0" auto" true" comment"Maximum still water level to calculate speedofsound using coofsound" units comment="netres (m)" is

<coefsound value"-20" coment="Coerficient to multiply speedsystem" />
use in the simulation (by default speedofsound-coersoundsppeedsystem) " /

<gamas value="7" coment="Poiltropic constant for water used in the state ectuation" />
<chopo value"" 1000 " comment-"Reference
/constantsdets
mkeonfig bound

$\underset{\text { </definition> }}{\text { Spoinciax }}$
</definition>
<commands>
$\underset{\substack{\text { <commands> } \\ \text { emainist> }}}{ }$
<setarammode mode""full" />
<drawbox>
Cboxrfi11>solidd/boxti11>
point $x=-0^{-0} y=-1 " z=-0=1$
</daraviox>
seetmkbound mk-"0" />
<boxfi11>bottom | left | right | front | back</boxfil11>

</dravbox
</mainl
commands>
</geemer:
<execution>
<parametero>
parameter key="Stepalgorithm" value="1" comment-"step Algorithan 1iverlet, $2:$ Sympleatio (dofault-1)"

(parameter key" ${ }^{\text {Rerrel }} 1$

<parameter $\mathrm{key}=$ "Visco" value"" 0.02 " comment="Viscosity value"
cparameter ke

<parameter key"-Dtallparticles" value="0" comment-"Velocity of particles used to calcoulate Dr. 1:All, 0:Only fluid/tioating (defailt-0)"

<parameter key=- Partsouthax" wive"1" "

</Darticles>
<constants>
<gravity x=00"
<ctinumber value" 0 o.
<ef1number value""0.2
<gamma value="7" />
<xhopo value="1000" units_corment=-"kg/m3" />
<dp value="0.01" units_coment="metres (m)" / /

$\underset{\text { </constanste> }}{\text { ensen }}$

Structure of the XML file

Divided in two sections:
"casedef"

Definition of the case with initial geometry and configuration.
Created by the user and used by GenCase
"execution"

Information required to execute the case.
Created by the user, modified by GenCase and only used by DualSPHysics

```
- <case>
    { <casedef>

\section*{Structure of the XML file}
- "casedef":
- constantsdef constants needed in SPH
- mkconfig label configuration
- geometry system geometry (boundaries and fluid)
- definition
- commands (list \& mainlist)
- initials special features for fluid particles
- floatings description of floating objects
- motion description of boundary movement
- "execution"
- special automatic wave generation and external forces
- wavepaddles (piston \& piston_spectrum)
- accinputs
- parameters execution parameters in DualSPHysics

\section*{XML file}

\section*{CASEDEF-CONSTANTSDEF}
```

<constantsdef>
 <lattice bound="1" fluid="1" />
 <gravity x="0" y="0" z="-9.81" comment="Gravitational acceleration"
 units_comment="m/s^2" />
 <rhop0 value="1000" comment="Reference density of the fluid"
 units_comment="kg/m^3" />
 <hswl value="0" auto="true" comment="Maximum still water level to calculate speedofsound"
 units_comment="metres (m)" />
 <gamma value="7" comment="Polytropic constant for water used in the state equation" />
 <speedsystem value="0" auto="true" comment="Maximum system speed
 (by default the dam-break propagation is used) " />
 <coefsound value="20" comment="Coefficient to multiply speedsystem" />
 <speedsound value="0" auto="true" comment="Speed of sound to use in the simulation
 (by default speedofsound=coefsound*speedsystem) " />
 <coefh value="0.866025" comment="Coefficient to calculate the smoothing length
 (h=coefh*sqrt(3*dp^2) in 3D)" />
 <cflnumber value="0.2" comment="Coefficient to multiply dt" />
</constantsdef>
```

\section*{XML file}

\section*{CASEDEF-CONSTANTSDEF}

\section*{<constantsdef>}

\section*{Lattice}
```

<lattice bound="1" fluid="1" />
<gravity x="0" y="0" z="-9.81" comment="Gravitational acceleration"
units_comment="m/s^2" />
<rhop0 value="1000" comment="Reference density of the fluid"
units_comment="kg/m^3" />
<hswl value="0" auto="true" comment="Maximum still water level to calculate speedofsound"
units_comment="metres (m)" />
<gamma value="7" comment="Polytropic constant for water used in the state equation" />
<speedsystem value="0" auto="true" comment="Maximum system speed
(by default the dam-break propagation is used) " />
<coefsound value="20" comment="Coefficient to multiply speedsystem" />
<speedsound value="0" auto="true" comment="Speed of sound to use in the simulation
(by default speedofsound=coefsound*speedsystem) " />
<coefh value="0.866025" comment="Coefficient to calculate the smoothing length
 (h=coefh*sqrt(3*dp^2) in 3D)" />
<cflnumber value="0.2" comment="Coefficient to multiply dt" />
</constantsdef>

```
lattice: indicates the type of mesh to create particles:
- 1: one particle per point
Points

Particles (lattice=1)
Particles (lattice=2)


\section*{<constantsdef>}

\section*{Gravity}
<lattice bound="1" fluid="1" />

\[
\frac{d \boldsymbol{v}_{a}}{d t}=-\sum_{b} m_{b}\left(\frac{P_{b}+P_{a}}{\rho_{b} \cdot \rho_{a}}+\Pi_{a b}\right) \nabla_{a} W_{a b}+\boldsymbol{g}
\]

\section*{XML file}

\section*{CASEDEF-CONSTANTSDEF}

\section*{<constantsdef>}

Speed of sound
<lattice bound="1" fluid="1" />

units comment="m/s^2" />
<rhop0 value="1000" comment="Reference density of the fluid"
units comment="kg/m^3" />
<hswl value="0" auto="true" comment="Maximum still water level to calculate speedofsound" units comment="metres (m)" />
<gamma value="7" comment="Polytropic constant for water used in the state equation" />
<speedsystem value="0" auto="true" comment="Maximum system speed
(by default the dam-break propagation is used) " />
<coefsound value="20" comment="Coefficient to multiply speedsystem" />
<speedsound value="0" auto="true" comment="Speed of sound to use in the simulation
(by default speedofsound=coefsound*speedsystem)" />
<coefh value="0.866025" comment="Coefficient to calculate the smoothing length
(h=coefh*sqrt(3*dp^2) in 3D)" />
<cflnumber value="0.2" comment="Coefficient to multiply dt" /> </constantsdef>
\[
P=\frac{c_{s}^{2} \sqrt[\rho_{0}]{\gamma}\left(\left(\frac{\rho}{\rho_{0}}\right)^{-1}-\sqrt[{\sqrt{\gamma}}]{\text { speedsystem }}=\sqrt{g \sqrt{h_{s w l}}}\right.}{\sqrt{\gamma}}=\frac{c_{s}=\operatorname{coef}_{\text {sound }} \cdot \sqrt{g \cdot h_{s w l}}}{\sqrt{\gamma}} \begin{gathered}
c_{\text {sound }}^{2} \cdot g \cdot h_{s w l} \cdot \rho_{0} \\
B=\frac{c_{s} \cdot \rho_{0}}{\sqrt{\gamma}}
\end{gathered}
\]

\section*{XML file}

\section*{CASEDEF-CONSTANTSDEF}

\section*{<constantsdef>}

\section*{Speed of sound}
```

<lattice bound="1" fluid="1" />
<gravity x="0" y="0" z="-9.81" comment="Gravitational acceleration"
units_comment="m/s^2" />
<rhop0 value="1000" comment="Reference density of the fluid"
units_comment="kg/m^3" />
<hswl value="0" auto="true" comment="Maximum still water level to calculate speedofsound"
units_comment="metres (m)" />
<gamma value="7" comment="Polytropic constant for water used in the state equation" />
<speedsystem value="0" auto="true" comment="Maximum system speed
(by default the dam-break propagation is used)" />
<coefsound value="20" comment="Coefficient to multiply speedsystem" />
<speedsound value="0" auto="true" comment="Speed of sound to use in the simulation
(by default speedofsound=coefsound*speedsystem)" />
<coefh value="0.866025" comment="Coefficient to calculate the smoothing length
 (h=coefh*sqrt(3*dp^2) in 3D)" />
<cflnumber value="0.2" comment="Coefficient to multiply dt" />
</constantsdef>

```
\[
P=\frac{c_{s}^{2} \rho_{0}}{\gamma}\left(\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}-1\right) \begin{array}{r}
\text { speedsystem }=\sqrt{g \cdot h_{s w l}} \\
c_{s}=\operatorname{coef}_{\text {sound }} \cdot \sqrt{g \cdot h_{s w l}} \\
B=\frac{c_{s}^{2} \cdot \rho_{0}}{\gamma}=\frac{\operatorname{coef}_{\text {sound }}^{2} \cdot g \cdot h_{s w l} \cdot \rho_{0}}{\gamma}
\end{array}
\]

\section*{XML file}

\section*{CASEDEF-CONSTANTSDEF}

\section*{Speed of sound}

\section*{<constantsdef>}
```

 <lattice bound="1" fluid="1" />
 <gravity x="0" y="0" z="-9.81" comment="Gravitational acceleration"
 units_comment="m/s^2" />
 <rhop0 value="1000" comment="Reference density of the fluid"
 units_comment="kg/m^3" />
 <hswl value="0" auto="true" comment="Maximum still water level to calculate speedofsound"
 units_comment="metres (m)" />
 <gamma value="7" comment="Polytropic constant for water used in the state equation" />
 <speedsystem value="0" auto="true" comment="Maximum system speed
 (by default the dam-break propagation is used)" />
    ```
    <coefsound value="20" comment="Coefficient to multiply speedsystem" />
    <speedsound value="0" auto="true" comment="Speed of sound to use in the simulation
            (by default speedofsound=coefsound*speedsystem) " />
    <coefh value="0.866025" comment="Coefficient to calculate the smoothing length
    (h=coefh*sqrt (3*dp^2) in 3D) " />
<cflnumber value="0.2" comment="Coefficient to multiply dt" />
</constantsdef>
\[
P=\begin{gathered}
\text { speedsystem }=\sqrt{g \cdot h_{s w l}} \\
\gamma \\
c_{s} \rho_{0} \\
\left(\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}-1\right) \\
B=\frac{c_{s}=\operatorname{coef}_{\text {sound }}^{2} \cdot \sqrt{g \cdot h_{s w l}}}{\gamma}=\frac{\operatorname{coef}_{\text {sound }}^{2} \cdot g \cdot h_{s w l} \cdot \rho_{0}}{\gamma}
\end{gathered}
\]

\section*{XML file}

\section*{CASEDEF-CONSTANTSDEF}
```

<constantsdef>
Kernel size
<lattice bound="1" fluid="1" />
<gravity x="0" y="0" z="-9.81" comment="Gravitational acceleration"
units_comment="m/s^2" />
<rhop0 value="1000" comment="Reference density of the fluid"
units_comment="kg/m^3" />
<hswl value="0" auto="true" comment="Maximum still water level to calculate speedofsound"
units_comment="metres (m)" />
<gamma value="7" comment="Polytropic constant for water used in the state equation" />
<speedsystem value="0" auto="true" comment="Maximum system speed
(by default the dam-break propagation is used)" />
<coefsound value="20" comment="Coefficient to multiply speedsystem" />
<speedsound value="0" auto="true" comment="Speed of sound to use in the simulation
(by default speedofsound=coefsound*speedsystem)" />
<coefh value="0.866025" comment="Coefficient to calculate the smoothing length
 (h=coefh*sqrt(3*dp^2) in 3D)" />
```
<cflnumber value="0.2" comment="Coefficient to multiply dt" />
</constantsdef>
| coefh=1  <br> coefh=1.2, 1.5 typical value <br> better for wave propagation  | $h=\operatorname{coefh} \cdot \sqrt{d x^{2}+d y^{2}+d z^{2}}$ <br> $h=\operatorname{coefh} \cdot \sqrt{3 \cdot d p^{2}}$ <br> $h=\operatorname{coefh} \cdot \sqrt{3} \cdot d p$ |
| :--- | :--- |

## Other option is to define:


<hdp value="1.5" comment="Coefficient to calculate the smoothing length (hdp=h/dp)" />

$$
h d p=h / d p
$$

## XML file

## CASEDEF-CONSTANTSDEF

```
<constantsdef>
Time-step
 <lattice bound="1" fluid="1" />
 <gravity x="0" y="0" z="-9.81" comment="Gravitational acceleration"
 units_comment="m/s^2" />
 <rhop0 value="1000" comment="Reference density of the fluid"
 units_comment="kg/m^3" />
 <hswl value="0" auto="true" comment="Maximum still water level to calculate speedofsound"
 units_comment="metres (m) " />
 <gamma value="7" comment="Polytropic constant for water used in the state equation" />
 <speedsystem value="0" auto="true" comment="Maximum system speed
 (by default the dam-break propagation is used) " />
 <coefsound value="20" comment="Coefficient to multiply speedsystem" />
 <speedsound value="0" auto="true" comment="Speed of sound to use in the simulation
 (by default speedofsound=coefsound*speedsystem) " />
 <coefh value="0.866025" comment="Coefficient to calculate the smoothing length
 (h=coefh*sqrt(3*dp^2) in 3D) " />
<cflnumber value="0.2" comment="Coefficient to multiply dt" />
```

</constantsdef>

## $\Delta t=\mathrm{CFL} \cdot \min \left(\Delta t_{f}, \Delta t_{c v}\right)$

$$
\begin{aligned}
& \Delta t_{f}=\min \left(\sqrt{h /\left|f_{a}\right|}\right) \\
& \Delta t_{c v}=\min _{a} \frac{h}{c_{s}+\max _{b}\left|\frac{h \mathbf{v}_{a b} \cdot \mathbf{r}_{a b}}{\mathbf{r}_{a b}^{2}}\right|_{15}}
\end{aligned}
$$

## CASEDEF-MKCONFIG

## - <mkconfig boundcount="240" fluidcount="10"> <mkorientbound mk=" 0 " orient=" YxZ "/> $<$ mkorientfluid mk="1" orient="yzX" $/>$ <mkorientfluid mk="2" orient="ZYx"/> </mkconfig>

mkorientfluid = "xyz"
mkorientfluid = "xyz" mkorientfluid $=" y z X "$ mkorientfluid $=$ "ZYx"

mk: label used to

- defines the order objects are created
- applies specific features to the different set of points such as movement, rigid motion...
240 labels for boundary particles and 10 labels for fluid particles
mkorientation: determines the order of particles when creating one object (useful for visualization with the variable $i d p$ )


## XML file

## CASEDEF-GEOMETRY-DEFINITION

```
<!--DEFINITION OF DOMAIN WHERE PARTICLES WILL BE CREATED -->
<definition dp="0.005">
 <pointmin x="-0.05" y="0.1" z="-0.05" />
 <pointmax x=" 2.00" y="0.1" z=" 1.00" />
</definition>
```

dp defines the distance between particles
WHEN CHANGING THIS PARAMETER, THE TOTAL NUMBER OF PARTICLES IS MODIFIED
pointmin \& pointmax defines the dimensions of the domain where particles can be created


## XML file

## CASEDEF-GEOMETRY-DEFINITION

```
<!--DEFINITION OF DOMAIN WHERE PARTICLES WILI BE CREATED -->
<definition dp="0.005">
 <pointmin x="-0.05" y="0.1" z="-0.05" />
 <pointmax x=" 2.00" y="0.1") z=" 1.00" />
</definition>
```

A 2-D configuration can be generated by imposing the same values along Y-direction <pointmin> = <pointmax>


## XML file

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

<commands>
```
<mainlist>
 <setshapemode>dp | bound</setshapemode>
 <setdrawmode mode="full" />
 <!--CREATION OF FLUID PARTICLES (BOX OF WATER)-->
```
    <setmkfluid mk="0" />
    <drawbox>
        <boxfill>solid</boxfill>
        <point \(x=" 0 " \mathrm{y}=\) "0" \(\mathrm{z}=\) "0" />
        <size x="0.4" y="0.67" z="0.3" />

Volume of fluid: setmkfluid \(m \mathrm{k}=0\), solid to create particles within the specified volume drawbox to plot a rectangular box defining a corner and its size in the 3 directions
    </drawbox>
    <!--CREATION OF BOUNDARY PARTICLES (WALLS OF TANK) -->
    <setmkbound mk="0" />
    <drawbox>
            <boxfill>bottom | left | right | front | back</boxfill>
            <point x="0" y="0" z="0" />
            <size \(\mathrm{x}=\) "1.6" \(\mathrm{y}=\) "0.67" \(\mathrm{z}=\) "0.4" />
    </drawbox>
    <shapeout file="" />

Boundary Tank: setmkbound mk=0, specify box faces on which particles are created (top is not used in this example)
</mainlist>
</commands>

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

This command indicates the mode to create points where particles will be generated

- <mainlist>
<setdrawmode mode="wire"/>
<setdrawmode mode="face"/>
<setdrawmode mode="solid"/>
<setdrawnode mode="fill"/>
</mainlist>


solid
solid

face
<setdrawmode>:
- "wire": wire mode
- "face": draw faces
- "solid": draw inside
- "full": combines face and solid

full


## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

```
- <mainlist>
 <setshapemode>dp | bound</setshapemode>
 <setshapemode>dp | bound|fluid</setshapemode>
 <setshapemode>real|void</setshapemode>
 </mainlist>
```

<setshapemode>: defines the draw operations to create VTK files (polygons)

- "real": using the real coordinates
- "dp": adjusting coordinates to $d p$
- "fluid": operations with $m k$-fluid
- "bound": operations with $m k$-bound
- "void": operations with $m k$-void


## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

<setshapemode>: defines the draw operations to create a VTK files (polygons)

- <mainlist>
<setshapemode>dp|bound</setshapemode>
<setdrawmode mode="full"/>
<setmkfluid mk="0"/>
+ <drawbox></drawbox>
<setmkbound mk="0"/>
$+<$ drawbox $></$ drawbox $>$
<shapeout file="Box"/>
<setmkvoid/>
$+<$ drawbox></drawbox>
<setmkbound mk="1"/>
+ <drawbox></drawbox> <shapeout file="Building"/>
</mainlist>
shapeout: creates VTK files (polygons)
of only some bound objects
Case_Box_Dp.vtk
Case_Building_Dp.vtk
- <mainlist>
<setshapemode>real | dp | bound</setshapemode>
<setdrawmode mode="full"/>
<setmkfluid mk="0"/>
+ <drawprism mask="0"></drawprism>
<setmkvoid/>
+ <drawbox></drawbox>
<setdrawmode mode="face"/>
<setmkbound mk="10"/>
$+<$ drawbox $></$ drawbox $>$
<setmkbound mk="0"/>
+ <drawprism mask="96"></drawprism> <shapeout file="" reset="true"/>
</mainlist>
shapeout: creates VTK files (polygons)
of all the bound objects
Case__Real.vtk
Case__Dp.vtk
reset="true" objects created after this command will be saved on a different VTK file


## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

These commands indicate the type of particles to be generated

```
- <commands>
 - <mainlist>
 <setmkvoid/>
 <setmkfluid mk="0"/>
 <setmkbound mk="0">
 <setmknextfluid next="true"/>
 <setmknextbound next="false"/>
 <setmknextauto active="true"/>
 </mainlist>
 </commands>
```

<setmkvoid>, <setmkfluid>, <setmkbound>: defines the label $m k$ to draw points of type: void (empty), fluid, bound
<setmknextfluid>, <setmknextbound>: increases (decreases) the value of $m k$ with next=true (=false) <setmknextauto>: after each draw command $m k$ is increased automatically

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

Transformation utilities

```
- <mainlist>
 <setshapemode>dp | bound</setshapemode>
 <setmkbound mk="0"/>
 <move x="0.5" y="0" z="0"/>
 +<drawbox></drawbox>
 <shapeout file="BoxMove" reset="true"/>
 <matrixreset/>
 <scale }\mathbf{x}="2" y="1.5" z="0.5">
 +<drawbox></drawbox>
 <shapeout file="BoxScale" reset="true"/>
 <matrixreset/>
 <rotate x="0" y="0" z="1" ang="45">
 +<drawbox></drawbox>
 <shapeout file="BoxRotate" reset="true"/>
</mainlist>
```

<move>: a displacement is applied to the transformation matrix
<scale>: scaling is applied to matrix
<rotate>:a starting vector and angle are given for object rotation
<matrixreset>: the modified matrix is replaced by the original one (identity matrix)

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST



$$
\begin{aligned}
& \text { <move x=" } 0.5 " \mathrm{y}=\text { ="0" } \mathrm{z=}=0 \text { "/> } \\
& \text { <drawbox ...> }
\end{aligned}
$$


<scale $x=" 2$ " $y=" 1.5^{\prime \prime} z=" 0.5^{\prime \prime} />$ <drawbox ...>
<rotate $\mathrm{x}=$ "0" $\mathrm{y}=$ ="0" $\mathrm{z}=$ ="1" ang="45"/>
<drawbox ...>

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>
<setshapemode>dp|bound</setshapemode>
<setmkbound $m k=" 0 \mid>$
- <setlinebegin $>$
<point $x=" 0$ " $y=" 0$ " $z=" 0$ " $/>$
</setlinebegin>
$-<d r a w l i n e t o>$
<point $x=" 0$ " $y=" 1$ " $z=" 0 " />$
</drawlineto $>$
<setmknextbound next="true"/>
- <drawline>
<point $x=00$ " $y=$ "1" $z=" 0 " />$
$<$ point $x=1 " y=$ " 1 " $z=" 0 " />$
</drawline>
<setmknextbound next="true"/>
- <drawline>
<point $x=$ "1" $y=$ "1" $z=" 0$ " $>$
$<$ point $x=1$ " $y=" 0$ " $z=" 0 ">$
</drawline>
<setmknextbound next="true"/>
- <drawlines>
<point $x=11 " y=" 0$ " $z=" 0 " />$
$<$ point $x=" 0 " y=" 0 " z=" 0.5 ">$
<point $x=" 0$ " $y=" 1$ " $z=" 0.5 ">$
<point $x=11 " y=" 1 " z=" 0.5 ">$
$<$ point $x=11 " y=" 0$ " $z=" 0.5 ">$
</drawlines $>$
<shapeout file="Lines" reset="true" $/>$
</mainlist>
<setlinebegin>: sets the begining of the line with <drawlineto>
<drawlineto>: draws a line to a given point
<drawline>: draws a line between two points
<drawlines>: draws lines between several points



## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>
<setshapemode>dp|bound</setshapemode>
<setmkbound mk="0"/>
- <drawtriangle>

$$
\begin{aligned}
& <\text { point } x=" 0 "^{\prime \prime} y=" 0 " x=" 0 " /> \\
& <\text { point } x=" 1 " y=" 0 " x=" 0 " /> \\
& <\text { point } x=" 0 " y=" 0.5 " z=" 0 " />
\end{aligned}
$$

</drawtriangle>
<shapeout file="Triangle" reset="true"/>
$-<$ drawquadri>
$<$ point $x=" 0$ " $\mathbf{y}=$ " 0 " $\mathbf{z}=$ " 0 " $\gg$
$<$ point $x=" 1 " y=" 0$ " $\mathbf{z}=$ " 0 " $/>$
$<$ point $x=" 1 " y=" 0.5^{\prime \prime} z=" 0 " />$
<point $x=" 0$ " $y=" 0.5 " z=" 0 ">$
</drawquadri>
<shapeout file="Quadri" reset="true"/>
$-<$ drawquadri>
$<$ point $x=" 0$ " $y=" 0$ " $\mathbf{z = " 0 " ~}>$
<point $x=$ "1" $y=" 0$ " $\mathbf{z}=$ " 0 " $>$
<point $\mathbf{x}=$ " 1 " $\mathbf{y}=$ " 0.5 " $\mathbf{z}=$ " 0.2 " $/>$
<point $x=" 0$ " $y=" 0.5^{\prime \prime} x=" 0 " />$
</drawquadri>
<shapeout file="Quadri2" reset="true"/>
$-<$ drawquadri>
$<$ point $x=" 0$ " $y=" 0$ " $\mathbf{z = " 0 " ) > ~}$
$<$ point $x=$ "1" $y=" 0$ " $\mathbf{z}=$ " 0 " $>$
<point $x=" 1 " y=" 0.5 " z=" 0 " />$
<point $\mathbf{x}=$ " 0 " $\mathbf{y}=$ " 0.5 " $\mathbf{z = " 0 . 2 " ~} />$
</drawquadri>
<shapeout file="Quadri3" reset="true"/>
</mainlist>

## TRIANGLES

<drawtriangle>: draws a triangle with tree points (points must always go counterclockwise)
<drawquadri>: draws the quadrilateral described by four points (points may not be in the same plane)


## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>
<setshapemode>dp|bound</setshapemode>


## TRIANGLES

<setmkbound mk="0")>

- <drawtrianglesstrip>
<point $x=" 0 " y=" 1 " z=" 0 " />$
$<$ point $x=" 0$ " $y=" 0$ " $\mathbf{z = " 0 " ) > ~}$
<point $x=" 1 " y=" 1 " z=" 0 ">$
<point $x=" 1 " y=" 0 " z=" 0 ">$
<point $x=" 2 " y=" 1 " z=" 0 ">$
<point $x=" 2 " y=" 0 " z=" 0 " />$
<point $x=" 3 " y=" 1 " z=" 0 ">$
<point $x=" 3 " y=" 0 " z=" 0 " />$
<point $x=" 4 " y=" 1 " z=" 0 "\rangle$
</drawtrianglesstrip>
<shapeout file="TrianglesStrip9" reset="true" $>$
</mainlist>
<drawtrianglesstrip>: draws a series of chained triangles



## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>
<setshapemode>dp|bound</setshapemode>
<setmkbound $\mathbf{m k}=" 0 \mid$ /
$-<d r a w t r i a n g l e s f a n>$
$<$ point $x=" 0 " y=" 0 " z=" 0 " />$
<point $x=11 " y=" 0$ " $z=" 0 " />$
$<$ point $x=" 0.9$ " $y=" 0.5$ " $z=" 0 " />$
$<$ point $x=" 0.5 " y=" 0.9^{\prime \prime} z=" 0 ">$
$<$ point $x=" 0 " y=" 1 " z=" 0 " />$
<point $x="-0.5^{\prime \prime} y=" 0.9^{\prime \prime} \mathbf{z}=$ " $0 " />$
</drawtrianglesfan>
<shapeout file="TrianglesFan" reset="true"/>
<setmkbound mk="0"/>
$-<d r a w t r i a n g l e s f a n>$
$<$ point $x=" 0$ " $y=" 0$ " $z=" 1 ">$
$<$ point $x=11 " y=" 0$ " $z=" 0 "\rangle$
$<$ point $x=" 0.8^{\prime \prime} y=" 0.6$ " $z=" 0 " />$
<point $x=" 0.2^{\prime \prime} y=" 1 " z=" 0 " />$
$<$ point $x="-0.5^{\prime \prime} y=" 0.9^{\prime \prime} \mathbf{z}={ }^{\prime \prime} 0 " />$
$<$ point $x="-0.9^{\prime \prime} y=" 0.3^{\prime \prime} \mathbf{z}={ }^{\prime \prime} 0 " />$
<point $x="-0.9^{\prime \prime} y="-0.3^{\prime \prime} \mathbf{z = " 0 " / >}$
<point $x="-0.5^{\prime \prime} y="-0.9^{\prime \prime} \mathbf{z =}=0 " />$

$<$ point $x=" 0.8^{\prime \prime} y="-0.6^{\prime \prime} \mathbf{z}={ }^{\prime \prime} 0 ">$
<point $x=11 " y=" 0$ " $z=" 0 " />$
</drawtrianglesfan>
<shapeout file="TrianglesFan2" reset="true"/> </mainlist>


## TRIANGLES

<drawtrianglesfan>: draws a range of triangles


## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>
<setshapemode>dp|bound</setshapemode>
<setmkbound mk="0">
- <drawtriangles>
- <points>
$<$ point $x=" 0$ " $y=" 0$ " $z=" 0 ">$
$<$ point $x=" 1 " y=" 0 " \mathbf{z = " 0 " >}$
<point $x=$ "1" $\mathbf{y}=$ "1" $\mathbf{z = " 0 " / > ~}$
<point $x=" 0$ " $y=" 1$ " $x=" 0 ">$
$<$ point $x=" 0$ " $y=" 0$ " $\mathbf{z = " 0 . 8 " / > ~}$

<point $x=11 \mathrm{y}=$ "1" $\mathbf{z = " 0 . 8 " / > ~}$
<point $x=" 0 " y=" 1 " \mathbf{x}=$ " 0.8 " $>$
</points>
- <triangles>
<triangle $x=" 0$ " $\mathbf{y}=$ " 1 " $\mathbf{z = " 5 " > ~}$
<triangle $x=" 1 " y=" 2 " x=" 6 ">$
<triangle $x=" 2 " y=" 3 " x=77 />$
<triangle $x=" 3$ " $y=$ " 0 " $x=44 />$
<triangle $\mathbf{x}=$ " 0 " $\mathbf{y}=$ " 2 " $\mathbf{x}=$ " 1 " $\gg$
<triangle $x=" 4 " y=" 5 " x=" 6 ">$
</tiangles>
</drawtriangles>
<shapeout file="Triangles" reset="true"/> </mainlist>


## TRIANGLES

<drawtriangles>: draws a series of triangles defined by
a set of points or a set of triangles


## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

## FIGURE

```
- <mainlist>
 <setshapemode>dp | bound</setshapemode>
 <setmkbound mk="0"/>
-<drawfigure>
 -<points>
 <point x="0" y="0" z="0"/>
 <point x="1" y="0" z="0">
 <point x="1" y="1" z="0">
 <point x="0" y="1" z="0"/>
 <point x="0" y="0" z="0.8">
 <point x="1" y="0" z="0.8">>
 <point x="1" y="1" z="0.8"/>
 <point x="0" y="1" z="0.8"/>
 </points>
 -<triangles>
 <triangle }x="0"y="1" z="5"/>
 <triangle }\mathbf{x}="1"\mathbf{y}="2" z="6"/>
 <triangle }x="2"y="3" z="7"/>
 <triangle }x="3"y="0" z="4"/>
 <triangle }x="0"y="2" z="1"/>
 <triangle }\mathbf{x="4" y="5" z="6"/>
 </triangles>
 </drawfigure>
</mainlist>
```

<drawfigure>: draws a solid figure consisting of all the interior points to the planes formed by the given triangles


DrawFigure
(drawmode $=$ solid )


DrawTriangles or
DrawFigure (drawmode=face)

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- $<$ mainlist>
<setshapemode>dp |bound</setshapemode>
<setdrawmode mode="fill"/>
<setmkbound $m k=" 0 " />$
$-<$ drawpyramid mask $=" 0$ " $>$
<point $x=" 0.25^{\prime \prime} y=" 0.25^{\prime \prime} z=" 0.7^{\prime \prime} />$
<point $x=" 0$ " $y=" 0$ " $z=" 0 " />$
$<$ point $x=11 " y=" 0$ " $z=" 0 \mid>$
$<$ point $x=" 0$ " $y=" 1$ " $z=" 0 " />$
</drawpyramid>
<shapeout file="Pyramid1" reset="true"/>
$-<d r a w p y r a m i d$ mask $=$ " 2 " $>$
<point $x=" 0.25^{\prime \prime} y=" 0.25^{\prime \prime} z=" 0.7^{\prime \prime} />$
<point $x=" 0$ " $y=" 0$ " $z=" 0 ">$
<point $x=1 " y=" 0$ " $z=" 0 " />$
<point $x=" 0$ " $y=$ " 1 " $z=" 0 " />$
</drawpyramid>
<shapeout file="Pyramid2" reset="true"/>
</mainlist>
<drawpyramid>: draws a pyramid with the top point and other points of the base (minimum 3)
mask indicates the faces to be hidden with bits the first bit always corresponds to the base and the rest to the faces following the order


Pyramid1
(mask=0)


Pyramid2
( mask $=2=0010$ )

## CASEDEF=GEOMETRY-COMMANDS-MAINLIST

## PRISM

```
- <mainlist>
 <setshapemode>dp | bound</setshapemode>
 <setdrawmode mode="full"/>
 <setmkbound mk="0"/>
-<drawprism mask="0">
 <point x="0" y="0" z="0"/>
 <point x="1" y="0" z="0">>
 <point x="0" y="1" z="0"/>
 <point x="0" y="0" z="0.5">
 <point x="1" y="0" z="0.5"/>
 <point x="0" y="1" z="0.5">
 </drawprism>
 <shapeout file="Prism1" reset="true"/>
-<drawprism mask="2">
 <point x="0" y="0" z="0"/>
 <point x="1" y="0" z="0"/>
 <point x="0" y="1" z="0"/>
 <point x="0" y="0" z="0.5">
 <point x="1" y="0" z="0.5">
 <point x="0" y="1" z="0.5">
 </drawprism>
 <shapeout file="Prism2" reset="true"/>
</mainlist>
- <mainlist>
<setshapemode>dp|bound</setshapemode>
<setdrawmode mode="fidl"/>
<setmkbound mk="0"/>
\(-<\) drawprism mask="0">
\(<\) point \(x=00\) " \(y=" 0\) " \(z=" 0 " />\)
\(<\) point \(x=11 " y=" 0\) " \(z=" 0 "\rangle\)
\(<\) point \(x=" 0\) " \(y=" 1\) " \(z=" 0 ">\)
\(<\) point \(x=" 0 " y=" 0\) " \(z=" 0.5 ">\)
<point \(x=1\) " " \(^{y}=\) " 0 " \(z=" 0.5 " />\)
\(<\) point \(x=" 0\) " \(y=" 1\) " \(z=" 0.5 " />\)
</drawprism>
<shapeout file="Prism1" reset="true" \(/>\)
\(-<d r a w p r i s m\) mask \(=\) " 2 " \(>\)
<point \(x=" 0\) " \(y=" 0\) " \(z=" 0 " />\)
<point \(x=11 " y=" 0\) " \(z=" 0 " />\)
<point \(x=" 0\) " \(y=" 1\) " \(z=" 0 " />\)
<point \(x=" 0\) " \(y=" 0\) " \(z=" 0.5 " />\)
\(<p\) oint \(x=11 " y=" 0\) " \(z=" 0.5 " />\)
\(<\) point \(x=" 0\) " \(y=" 1\) " \(z=" 0.5 " />\)
</drawprism>
<shapeout file="Prism2" reset="true"/>
</mainlist>
```

<drawprism>: draws a prism with a minimum of 6 points
The first half of points are the base and the second half the top (the number of points must be even)
mask indicates the faces to be hidden with bits
The first bit corresponds to the base, the second to the top and the rest to the faces following the order


Prism1 (mask=0)


Prism2 $($ mask $=2=00010)$

## CASEDEF=GEOMETRY-COMMANDS-MAINLIST

## PRISM

- <mainlist>
<setshapemode>dp|bound</setshapemode>
<setdrawmode mode="fuill"/>
<setmkbound mk="0"/>
$-<$ drawprism mask $=$ " 0 " $>$ <point $x=" 0$ " $y=" 0$ " $z=" 0 " />$ $<$ point $x=1$ " 1 y=" $-3 " \mathbf{z = " 0 " ~}>$ $<$ point $x=" 2$ " $y=" 0$ " $\mathbf{z}=$ " 0 " $\rangle$ $<$ point $x=" 5 " y=" 1 " z=" 0 " />$ $<$ point $x=" 2 " y=" 2$ " $\mathbf{z = " 0 " / >}$ <point $x=11 " y=" 5 " z=" 0 " />$ $<$ point $x=" 0$ " $y=" 2$ " $z=" 0 " />$ $<$ point $x="-3 " y=11 " z=01>$ <point $x=" 0 " \mathbf{y}=" 0$ " $\mathbf{z}=" 6$ " $>$
 <point $x=" 2 " \mathbf{y}=" 0$ " $\mathbf{z}=$ " 6 " $/>$ <point $x=" 5 " y=" 1 " \mathbf{z}=" 6$ " $>$ $<$ point $x=" 2 " y=" 2 " \mathbf{z = " 6 " / >}$ <point $x=11 " y=" 5 " \mathbf{z}=16 " />$ <point $x=" 0 " y=" 2 " \mathbf{z}=$ " 6 " $>$ $<$ point $x="-3 " y=" 1 " \mathbf{z}={ }^{\prime \prime} 6 ">$
</drawprism $>$
<shapeout file="Prism3" reset="true"/> </mainlist>
<drawprism>: draws a prism with a minimum of 6 points
The first half of points are the base and the second half the top (the number of points must be even)
mask indicates the faces to be hidden with bits
The first bit corresponds to the base, the second to the top and the rest to the faces following the order



## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

## PRISM

## - <mainlist>

<setshapemode>dp |bound</setshapemode>
<setdrawmode mode="fill"/>
<setmkbound mk="0"/>

- <drawprism mask="0">
$<$ point $x=" 0$ " $\mathbf{y}=$ " 0 " $\mathbf{z = " 0 " ~}>$ $<$ point $x=" 4 " y=" 0 " x=" 0 ">$ <point $x=$ "4" $\mathbf{y}=$ "4" $\mathbf{z = " 0 " / > ~}$ <point $x=$ "0" $y=44$ " $z=" 0 ">$ <point $x=$ "2" $\mathbf{y}=$ " 1 " $\mathbf{z =}=$ " 5 " $>$ <point $x=" 3$ " $y=" 2 " x=" 5 ">$ <point $x=$ "2" $\mathbf{y}=$ "3" $\mathbf{z =}=5$ " $/>$ <point $x=$ "1" $\mathbf{y}=$ "2" $\mathbf{z =}=$ " $">$
</drawprism>
<shapeout file="Prism4" reset="true"/>
</mainlist>



## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

## MASK

mask indicates the faces to be hidden
Initially this is defined using BITS

FOR EXAMPLE: OBJECT WITH 4 FACES:

mask="0"	decimal $\mathbf{0}$ is $\mathbf{0 0 0 0}$ in binary	no faces are hidden
mask="1"	decimal $\mathbf{1}$ is $\mathbf{0 0 0 1}$ in binary	first face is hidden
mask="2"	decimal $\mathbf{2}$ is $\mathbf{0 0 1 0}$ in binary	second face is hidden
mask="4"	decimal $\mathbf{4}$ is $\mathbf{0 1 0 0}$ in binary	third face is hidden
mask="8"	decimal $\mathbf{8}$ is $\mathbf{1 0 0 0}$ in binary	fourth face is hidden
mask="12"	decimal $\mathbf{1 2}$ is $\mathbf{1 1 0 0}$ in binary	

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

There is a second and easiest system to use mask
mask can be also defined using the index of the faces instead of bits In this example, faces 1,2, 6 and 7 are not created, only 3,4 and 5 It is important to use symbol " $\mid$ " to detect this system!!!

## PRISM



## EXAMPLE: CaseWavemaker_Def.xml

```
<setmkbound mk="0" />
<drawprism mask="1 | 2 | 6 | 7">
 <point x="5" y="0" z="1.5" />
 <point x="5" y="0" z="1.1" />
 <point x="1" y="0" z="0" />
 <point x="0" y="0" z="0" />
 <point x="0" y="0" z="1.5" />
 <point x="5" y="2" z="1.5" />
 <point x="5" y="2" z="1.1" />
 <point x="1" y="2" z="0" />
 <point x="0" y="2" z="0" />
 <point x="0" y="2" z="1.5" />
```

</drawprism>

2

6
5

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

## - <mainlist>

<setshapemode>dp | bound</setshapemode>
<setmkbound mk=" 0 " $/>$

- <drawbox>
<boxfill>solid</boxfill>
<point $x=" 0$ " $y=" 0$ " $z=" 0 " />$
$<$ size $x=11 " y=" 1 " z=" 0.5 ">$
</drawbox $>$
<shapeout file="BoxSolid" reset="true"/>
$-<d r a w b o x>$
<boxfill>all</boxfill>
<point $x=" 0$ " $y=" 0$ " $z=" 0 " />$ $<$ size $x=" 1 " y=" 1 " z=" 0.5 ">$
</drawbox>
<shapeout file="BoxA" reset="true"/>
- <drawbox>
<boxfill>all $\wedge$ top $</$ boxfill $>$
<point $x=$ " 0 " $y=" 0$ " $z=" 0 ">$
<size $x=$ " 1 " $y=$ "1" $z=" 0.5 ">$
</drawbox $>$
<shapeout file="BoxB" reset="true"/>
$-<$ drawbox $>$
<boxfill $>$ bottom | left | right $</$ boxfill $>$ <point $x=" 0$ " $y=" 0$ " $z=" 0 ">$ $<$ size $x=1{ }^{\prime \prime} \mathbf{y}=$ " 1 " $\mathbf{z}=$ " $0.5 ">$
</drawbox>
<shapeout file="BoxC" reset="true" $/>$
</mainlist>

<drawbox>: draws a box with an initial point and the size
<boxfill> indicates if solid or face and the faces to be hidden


BoxSolid (solid)


BoxB (all^top)
means
all faces excluding top


BoxA (all)


BoxC (bottom|left|right)
means only bottom+left+right

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST



BeachFace


BeachFace
(mask="128")

<drawbeach>: draws a beach with the lateral points that formed the profile of the beach mask indicates the faces to be hidden .

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>
<setmkbound $m k=" 0 \mid>$
<setdrawmode mode="solid"/>
- <drawsphere radius=" 0.8 " $>$
<point $x=11 " y=" 1 " z=11 />$ </drawsphere>
<setdrawmode mode="face"/>
$-<d r a w s p h e r e ~ r a d i u s=" 0.8 ">$
<point $x=11 " y=" 1 " z=11 />$ </drawsphere>
</mainlist>
<setdpctes ctesphere=" 0.4 "/>
<setdpctes ctespherenumsides="40"/>
<drawsphere>: draws a sphere with the center point and the radius


Sphere
(drawmode=solid)


Sphere (drawmode=face)
when face: ctesphere indicates the width of the sphere ctespherenumsides indicates the number of triangles used to create the VTK of polygons

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

## CYLINDER

- <mainlist>
<setmkbound mk="0"/>
<setdrawmode mode="solid"/>
$-<d r a w c y l i n d e r$ radius $=$ " 1 " mask="0"> <point $\mathbf{x}=$ " $1.5^{\prime \prime} \mathbf{y}=11.5^{\prime \prime} \mathbf{z}=$ " $0.5^{\prime \prime} />$ <point $x=1.5^{\prime \prime} \mathbf{y}=1.5^{\prime \prime} \mathbf{z}=3$ " $1>$
</drawcylinder>
<setdrawmode mode="face"/>
$-<$ drawcylinder radius="1" mask="0"> <point $\mathbf{x}=$ " $3.5^{\prime \prime} \mathbf{y}=$ " $2.5^{\prime \prime} \mathbf{z}=$ " $0.5^{\prime \prime} />$ <point $\mathbf{x}=$ " $3.5^{\prime \prime} \mathbf{y}=" 2.5$ " $\mathbf{z}=$ " $^{\prime \prime} />$ </drawcylinder>
</mainlist>
<setdpctes ctecylindertube="0.6"/>
<setdpctes ctecylindercover="0.7"/>
<setdpctes ctecylindernumsides="40"/>
<drawcylinder>: draws a cylinder with two points and radius mask indicates the faces to be hide



> Cylinder (drawmode=face)
when face:
ctecylindertube indicates the width of the tube ctecylindercover indicates the width of the covers ctespherenumsides indicates the number of triangles used to create the VTK of polygons

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>
<setmkbound mk="0">
$<$ drawfilestl file="File.stl" $/>$
<drawfileply file="File.ply"/>
<drawfileply file="File.vtk"/>
$-<$ drawfilestl file="File.stl">
$<d$ drawmove $\mathrm{x}=\mathrm{=} 0.5 \mathrm{~F} \mathrm{y}=$ " 0 " $\mathrm{z}=$ " 0 " $>$
<drawrotate angx=" 10 " angy="15" angz="30" $>$
<drawscale $\mathrm{x}=$ "1" $\mathrm{y}=$ "1" $\mathrm{z}=$ " 0.8 " $>$
</drawfilestl>
$-<$ drawfileply file="File.ply">

</drawfileply>
- <drawfileply file="File.ply">
<drawmove $\mathrm{x}=\mathrm{=} 0.5 \mathrm{y} \mathrm{y}=\mathrm{=} 0 \mathrm{0} \mathrm{z}=$ " 0 " $/>$
<drawrotate angx=" 10 " angy=" 15 " angz=" \(30 " />\)
</drawfileply>
- <drawfileply file="File.ply">
<drawrotate angx=" 10 " angy=" 15 " angz=" 30 " $/>$
</drawfileply>
$-<$ drawfilevtk file="File.vtk">
<polyselec>points</polyselec>
</drawfilevtk>
$-<d r a w f i l e v t k$ file="File.vtk"> <polyselec>points | lines</polyselec>
</drawfilevtk>
$-<d r a w f i l e v t k$ file="File.vtk">
<polyselec>triangles</polyselec>
</drawfilevtk>
$-<d$ drawfilevtk file="File.vtk">
<polyselec>polygons</polyselec>
</drawfilevtk>

IMPORTING EXTERNAL GEOMETRIES
<drawfilevtk>: load a VTK file to be converted into points
<drawfileply>: load a PLY file to be converted into points
<drawfilestl>: load a STL file to be converted into points

Some modifications can be applied to the VTK, PLY or STL drawmove a displacement is applied to the external object drawrotate a rotation is applied to the external object drawscale scaling is applied to the external object

[^0]
## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>

IMPORTING EXTERNAL GEOMETRIES
<setshapemode>real|bound|dp</setshapemode>
<setmkbound mk="0"/>
$<d r a w f i l e v t k$ file $=$ "pump_fixed. vtk. $/>$
<setmkbound mk="1">
<drawfilevtk file="pump_moving.vtk."/>
<setmkfluid $\mathrm{mk}=$ " 0 " $/>$

- <fillbox $x=" 0.14$ " $y="-0.1$ " $z="-0.39 ">$ <modefill>void</modefill> <point $\mathrm{x}=$ "-0.6" $\mathrm{y}=$ "-0.39" $\mathrm{z}=$ "-0.8"/> <size $x=" 0.9^{\prime \prime} y=" 0.68{ }^{\prime \prime} \mathrm{z}=$ " 0.52 " $/>$ </fillbox>
</mainlist>
from VTK to points



## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>
<setmkfluid $\mathrm{mk}=" 0$ " $>$
<fillvoidpoint $x=" 3$ " $y=$ " 2 " $z=" 1 " />$
- <fillpoint $x=" 3$ " $y=$ " 2 " $z=" 1 ">$
<modefill>void</modefill>
</fillpoint>
- <fillpoint $x=" 1 " y=" 1 " z=" 1 "$ mkfluid="0">
<modefill>fluid</modefill>
</fillpoint>
- < fillpoint $x=" 1$ " $y=" 1 " z=" 1$ " mkbound="0">
<modefill>bound</modefill>
</fillpoint>
- <fillpoint $x=" 2 " y=" 2 " z=" 2$ " mkfluid="2" mkbound="8"> <modefill>border | void | fluid | bound</modefill>
</fillpoint>
$-<$ fillbox $x=" 0 " y=" 1 " z=" 0 ">$
<modefill>border</modefill>
<point $x=" 0.1^{\prime \prime} y=" 1 " z=1.1 />$
<size $x=" 3$ " $y=$ "4" $z=" 2 " />$
</fillbox>
- <fillprism $x=" 2 " y=" 3 " z=" 5 ">$
$<$ point $x=" 0$ " $y=" 0$ " $z=" 0 " />$
<point $x=1$ " $y=" 0$ " $z=" 0 ">$
<point $x=" 0$ " $y=" 1$ " $z=" 0 ">$
$<$ point $x=" 0$ " $y=" 0$ " $z=" 0.5 ">$
<point $x=" 1 " y=" 0$ " $z=" 0.5 " />$
<point $x=" 0$ " $y=" 1$ " $z=" 0.5 ">$
<modefill>void</modefill>
</fillprism $>$
<debugout>
</mainlist>


## FILLING DOMAINS

<fillpoint>: fills with points starting from the seed
<fillbox>: fills with points starting from the seed within the limits defined by a box
<fillfigure>: fills with points starting from the seed within the limits defined by a figure
<fillprism>: fills with points starting from the seed within the limits defined by a prism
<modefill> indicates what type of points can be filled with void, fluid, bound, it fills with that type of points inside the specified limits or the presence of a given type of point using border

## CASEDEF-GEOMETRY-COMMANDS-MAINLIST

- <mainlist>
<setshapemode>real| bound|dp</setshapemode>
<setmkbound $\mathrm{mk}=" 0$ "/>
<drawfilevtk file="pump_fixed.vtk"/>
<setmkbound mk="1">
<drawfilevtk file="pump_moving.vtk"/> <setmkfluid mk="0"/>
- <fillbox $\mathrm{x}=$ " 0.14 " $\mathrm{y}=$ "- $0.1 \mathrm{1"} \mathrm{z}=$ "- -0.39 "

> <modefill>void</modefill>
> <point $\mathrm{x}=$ "-0.6" $\mathrm{y}=$ " -0.39 " $\mathrm{z}=$ "-0.8"/> <size $\mathrm{x}=$ " $0.9^{\prime \prime} \mathrm{y}=$ " $0.68 \mathrm{z} \mathrm{z}=$ " $0.52^{\prime \prime} />$
</fillbox>
</mainlist>

FILLING DOMAINS
limits of the domain to fill
filling with fluid while void and before the limits defined by a box

## CASEDEF-INITIALS

- <geometry>
$-<$ definition dp="0.01">


## INITIAL VELOCITIES

<pointmin $x="-1 " y="-0.05^{\prime \prime} z="-0.05 " />$
$<$ pointmax $x=" 2 " y=" 1.1 " z=" 2 ">$
</definition $>$

- <commands>
$-<$ mainlist $>$
<setshapemode>real|dp|bound</setshapemode>
<setdrawnode mode="fill"/>
<setmkfluid $m k=1 " />$
$-<d r a w s p h e r e ~ r a d i u s=" 0.15 ">$
<point $\mathrm{x}=$ " $-0.55^{\prime \prime} \mathrm{y}=$ " $0.5^{\prime \prime} \mathrm{z}=$ " 0.18 " $>$
</drawsphere>
<setmkfluid mk="2"/>
- <drawbox $>$
<boxfill>solid</boxfill>
<point $x=" 1.4^{\prime \prime} y=" 0.35$ " $z=" 0.01 " />$
$<$ size $\mathrm{x}=$ " $0.3^{\prime \prime} \mathrm{y}=$ " $0.3^{\prime \prime} \mathrm{z}=$ " $0.3^{\prime \prime} />$
</drawbox>
$</$ mainlist $>$
</commands>
</geometry>
- <initials>
<velocity mkfluid="1" $x=$ " $1.05^{\prime \prime} y=" 0 " z=44.905^{\prime \prime} />$
<velocity mkfluid="2" $\mathbf{x}="-0.875^{\prime \prime} \mathbf{y}=" 0$ " $\mathbf{z}=" 5.886^{\prime \prime} />$
</initials>
<initials>: special behaviours can be imposed to a set of fluid particles labeled with a $m k$, such as:
<velocity> initial velocity defined by a vector
<velwave> a solitary wave defined by depth and amplitude


## CASEDEF-INITIALS

- <geometry>
- <definition dp="0.01">
<pointmin $x="-1 " y="-0.05^{\prime \prime} z="-0.05^{\prime \prime} />$
<pointmax $x=" 2$ " $y=" 1.1$ " $z=" 2 " />$
</definition $>$
$-<$ commands $>$
- <mainlist>
<setshapemode>real|dp|bound</setshapemode>


## INITIAL VELOCITIES

different initial velocities are imposed to two volumes of fluid $m k=1$ (sphere) and $m k=2$ (box)

$v_{\text {box }}=(-0.875,0,5.886)$


## CASEDEF-INITIALS

- <initials>
<velocity mkfluid="1" $x=1.05^{\prime \prime} y=" 0 " \mathbf{z}=44.905^{\prime \prime} />$ <velocity mkfluid="2" $x="-0.875^{\prime \prime} \mathbf{y}=$ " 0 " $\mathbf{z}=$ " 5.886 " $>$ </initials>


## INITIAL VELOCITIES

colour represents velocity
$\square$

$==$


## CASEDEF-FLOATINGS

```
- <floatings>
 <floating mkbound=" 0 " relativeweight="1.3">
\(-<\) floating mkbound="1" relativeweight="1.3">
 <velini \(x=" 1 " y=" 3 " z=" 2 ">\)
```



```
 </floating>
- <floating mkbound="2">
 <massbody value=" 1300 " \(>\)
 <center \(x=" 11\) " \(y=\) " \(122^{\prime \prime} z=" 13\) " \(>\)
 <inertia \(x=" 20 " y=" 22 " z=" 24 ">\)
 </floating>
\(-<\) floating mkbound="3">
 <massbody value=" 1300 "/>
 <center \(x=" 11 " y=" 122^{\prime \prime} z=" 13\) " \(>\)
 <inertia \(x=" 20 " y=" 22 " z=" 24 ">\)
 <velini \(x=" 1 " y=" 3 " z=" 2 ">\)
```



```
 </floating>
 - <floating mkbound="4">
 <massbody value=" 1300 " \(>\)
 <inertia \(x=" 20 " y=" 22 " z=" 24 ">\)
 </floating>
 </floatings>
```

DEFINING FLOATINGS
<floatings>: indicates that a set of particles labelled with the same $m k$ constitutes a floating object

## Only one of these values can be defined:

 rhopbody density of the object relativeweight in relation to the reference density massbody total mass of the objectSo that, the mass of a floating particles is: masspart = massbody / nfloat or masspart $=$ relativeweight $*$ rhop $0 * \mathrm{dp}^{\wedge} 3$ or masspart $=$ rhopbody $* \mathrm{dp}^{\wedge} 3$

These variables are computed by GenCase or can be also specified in advance: center gravity center of the rigid object inertia momentum of inertia of the rigid object velini initial linear velocity of the object omegaini initial angular velocity of the object

## CASEDEF-FLOATINGS

```
<floatings>
DEFINING FLOATINGS
 <floating mkbound="9" relativeweight="2" property="steel + userdef01" />
 <floating mkbound="10-79" relativeweight="0.50" property="pvc" />
</floatings>
<properties>
 <propertyfile file="Floating_Materials.xml" path="materials" />
 <property name="userdef01" Restitution_Coefficient_user="0.70"
 comment="User redefinition for Restitution Coefficient (-)" />
 <links>
 <link mkbound="0" property="steel + userdef01" comment="Property for the tank"/>
 </links>
</properties>
```

When the interaction of solids (boundaries or floatings) is computed using Discrete Element Method (DEM) some extra properties with parameters used in DEM are loaded from "Floating_Materials.xml":

```
<materials>
 <property name="steel">
 <Young_Modulus value="210000000000.0" comment="Young Modulus (N/m2)" />
 <PoissonRatio value="0.30" comment="Poisson Ratio (-)" />
 <Restitution_Coefficient value="0.80" comment="Restitution Coefficient (-)" />
 <Kfric value="0.45" comment="Kinetic friction coefficient" />
 </property>
</materials>
```


## CASEDEF-PROPERTIES

## DEFINING OTHER VARIABLES

Using section properties, users can define variables to be assigned to one or more $\boldsymbol{m} \boldsymbol{k}$.

```
<properties>
 <links>
 <link mkfluid="0" property="material_1" />
 <link mkbound="3-6,1" property="material_2+data_x" />
 </links>
 <propertyfile file="run/ftdata_ext.xml" path="case.materials" />
 <property name="material_1" weight="1.35" other="pepe"/>
 <property name="material_2" begin="168" count="973">
 <massbody value="4728.78" />
 <center x="4.99" y="5" z="7.03" />
 </property>
 <property name="data_x" weight="1.35" />
</properties>
```

Each label of property has a name and can group several values that can be text (other) or a number (weight)

```
<property name="material_1" weight="1.35" other="pepe"/>
```

or other subvalues (massbody and center)

```
<property name="material_2" begin="168" count="973">
 <massbody value="4728.78" />
 <center x="4.99" y="5" z="7.03" />
</property>
```


## CASEDEF-PROPERTIES

These properties can be loaded from an external file using propertyfile.
In this case, users have to indicate file name and path to access section with properties.

```
<propertyfile file="run/ftdata_ext.xml" path="case.materials" />
```

Example of file "ftdata_ext.xml":

```
<case>
 <materials>
 <property name="uno" value="1.35"/>
 <property name="dos" value="168">
 <massbody value="4728.78" />
 </property>
 </materials>
</case>
```

Section links assigns one or more property to one or several values of $\boldsymbol{m} \boldsymbol{k}$ :

- Values of material_1 are assigned to fluid particles with $\boldsymbol{m} \boldsymbol{k}=0$

```
<link mkfluid="0" property="material_1"/>
```

- Values of material_2 and data_x are assigned to boundary particles with $\boldsymbol{m} \boldsymbol{k}=1,3,4,5,6$

<link mkbound="3-6,1" property="material_2+data_x"/>
It is also possible to indicate one property directly in the definition of the floatings:

```
<floatings>
 <floating mkbound="4" property="Material_2">
 <massbody value="1300" />
 <inertia x="20" y="22" z="24" />
 </floating>
</floatings>
```


## CASEDEF-PROPERTIES

GenCase reads the information from case.casedef.properties and writes in case.execution.particles.properties.

```
<particles np="1494" nb="313" nbf="313" mkboundfirst="11" mkfluidfirst="1">
 <fixed mkbound="0" mk="11" begin="0" count="229" />
 <fixed mkbound="1" mk="12" begin="229" count="28" property="data_x+material_2" />
 <fixed mkbound="2" mk="13" begin="257" count="28" />
 <fixed mkbound="4" mk="15" begin="285" count="28" property="data_x+material_2" />
 <fluid mkfluid="0" mk="1" begin="313" count="1146" property="material_1" />
 <fluid mkfluid="1" mk="2" begin="1459" count="35" />
 <properties>
 <links>
 <link mk="1" property="material_1" />
 <link mk="12,15" property="data_x+material_2" />
 </links>
 <property name="material 1" weight="1.35" other="pepe"/>
 <property name="material_2" begin="168" count="973">
 <massbody value="4728.78" />
 <center x="4.99" y="5" z="7.03" />
 </property>
 <property name="data_x" weight="1.35" />
 </properties>
</particles>
```

Thus, DualSPHysics can access to assigned values to each $\boldsymbol{m} \boldsymbol{k}$.
The object of type JSpaceParts is used to obtain the assigned properties to each block of particles

## CASEDEF-MOTION

-Motion01: uniform rectilinear motion (<mvrect />) that also includes pauses (<wait/>)

```
-<motion>
- %objreal ref="1">
 <begin mov="1" start="0" finish="5.4"/>
 <mvrect id="1" duration="0.6" next="2">
 <vel x="1" y="0" z="0"/>
 </mvrect>
 <wait id="2" duration="0.3" next="3"|
 <vel x="1" y="0" z="0">
 </mvrect>
 wait id="4" duration="0.3" next="5",>
 -mvrect id="5" duration="0.6" next="6">
 <vel x="1" y="0" z="0"/>
 </mvrect>
 <wait id="6" duration="0.3" next="7"/>
 -<mvrect id="7" duration="-1" next="1">
 <vel x="-1.8" y="0" z="0">
 </mvrect>
 </objreal>
</motion>
```

movement defined for the set of particles with $m k=1$
first mov=1 during 0.6 s , then wait=2 for 0.3 s ,
then mov= 3 during 0.6 s , then wait=4 for 0.3 s , then mov=5 during 0.6s...
<mvrect>: uniform rectilinear movement
vel indicates the constant velocity vector

## CASEDEF-MOTION

- Motion01: uniform rectilinear motion (<mvrect />) that also includes pauses (<wait/>)

Time: 0.00 s

Time: 0.60 s

Time: 1.20 s

Time: 1.80 s

Time: 2.40 s

Time: 0.30 s

Time: 0.90 s

Time: 1.50 s

Time: 2.10 s

Time: 2.70 s

## CASEDEF-MOTION

-Motion02: combination of two uniform rectilinear motions (<mvrect/>)

- <motion>
- <objreal ref="1">
<begin mov="1" start="0">
- <mvrect id="1" duration="2" next="2">
<vel $x=" 1 " y=" 0 " z=" 0 " />$
</mvrect>
- < mvrect id="2" duration="1" next="1">
<vel $x="-2 " y=" 0$ " $z=" 0 ">$
</mvrect>
$<$ begin mov="3" start="0.5" $>$
<mvrect>: uniform rectilinear movement
- <mvrect id="3" duration="1.3" next="4"> <vel $x=" 0$ " $y=" 1 " z=" 0 ">$
</mvrect>
$-<$ mvrect id="4" duration="1.3" next="3"> <vel $x=" 0$ " $y="-1 " z=" 0 " />$
</mvrect>
</objreal>
</motion $>$


## CASEDEF-MOTION

-Motion02: combination of two uniform rectilinear motions (<mvrect />)


Time: 0.00 s


Time: 1.00 s


Time: 0.50 s


Time: 1.50 s


Time: 2.00 s
Time: 2.50 s

## CASEDEF-MOTION

- <motion>

```
- objireal ref="1">
 <begin mov="1" start="0"/>
 - < mvrect id="1" duration=" 1.5 " next=" 2 " \(>\)
 <vel \(x=" 1 " y=" 0\) " \(z=" 0 ">\)
 </mvrect>
 - <mvrect id="2" duration="1.5" next="1">
 <vel \(x=\) " \(-1 " y=" 0 " z=" 0 " />\)
 </mvrect>
 <begin mov="3" start=" \(0.11 />\)
 - <mvrect id=" 3 " duration=" 1.1 " next="4">
 <vel \(x=" 0\) " \(y=" 1 " z=" 0 " />\)
 </mvrect>
 - \(<\) mvrect id="4" duration=" 1.1 " next=" 3 " \(>\)
 <vel \(x=" 0\) " \(y="-1 " z=" 0 " />\)
 </mvrect>
 -<objreal ref="2">
 <begin mov="1" start=" \(0.2^{\prime \prime}>\)
 - <mvrect id=" 1 " duration=" 0.45 " next="2">
 <vel \(x=" 1 " y=" 0\) " \(z=" 0 " />\)
 </mvrect>
 - <mvrect id="2" duration=" 0.45 " next="3">
 <vel \(x=" 0\) " \(y=" 1 " z=" 0 " />\)
 </mvrect>
 - <mvrect id="3" duration=" 0.45 " next="4">
 <vel \(x="-1 " y=" 0\) " \(z=" 0 " />\)
 </mvrect>
 - <mvrect id="4" duration=" 0.45 " next="1">
 <vel \(x=" 0\) " \(y="-1 " z=" 0 " />\)
 </mvrect>
 </objreal>
</objreal>
```

- Motion03: movement of an object depending on the movement of another (hierarchy of objects)


## CASEDEF-MOTION

- Motion03: movement of an object depending on the movement of another (hierarchy of objects)


Time: 0.00 s


Time: 2.00 s


Time: 1.00 s


Time: 3.00 s

## CASEDEF-MOTION

-Motion04: accelerated rectilinear motion (<mvrectace />)

```
- <motion>
 -<objreal ref="1">
 <begin mov="1" start="0"/>
 -<mvrectace id="1" duration="1.411" next="2">
 <velini x="0" y="0" z="0"/>
 <ace }x="2"y="0" z="0"/
 </mvrectace>
 -<mvrectace id="2" duration="1">
 <velini x="-2" y="5" z="0"/>
 <ace }x="0" y="-10" z="0"/>
 </mvrectace>
 </objreal>
</motion>
```

<mvrectace>: accelerated rectilinear movement
velini indicates the initial velocity vector ace indicates the acceleration vector

## CASEDEF-MOTION

- Motion04: accelerated rectilinear motion (<mvrectace />)


Time: 0.00 s


Time: 1.50 s


Time: 0.75 s


Time: 2.25 s

## CASEDEF-MOTION

-Motion05: rotational motion (<mvrot />)

```
- <motion>
 -<objreal ref="3">
 <begin mov="1" start="0">
 -<mvrot id="1" duration=" 1000">
 <vel ang="20">
 <axispl }\textrm{x}="0.5"\textrm{y}="0.5"\textrm{z}="0"/
 <axisp2 x="0.5" y="0.5" z="1"/>
 </mvrot>
 </objreal>
 -<objreal ref="4">
 <begin mov="1" start="0">
 -<mvrot id="1" duration="1000">
 <vel ang="240"/>
 <axispl x="0.5" y="0.5" z="0"/>
 <axisp2 }\textrm{x}="0.5"\textrm{y}="0.5"\textrm{z}="1"
 </mvrot>
 </objreal>
</motion>
```

<mvrot>: rotational movement
vel indicates the angular velocity axisp1 first point of the rotation axis axisp2 second point of the rotation axis

## CASEDEF-MOTION

-Motion05: rotational motion (<mvrot />)


Time: 0.00 s



Time: 0.50 s


## CASEDEF-MOTION

-Motion06: accelerated rotation motion (<mvrotace />) and accelerated circular motion (<mvcirace />).

```
-<motion>
 -<obj>
 <objreal ref="1"/>
 <objreal ref="3"/>
 <objreal ref="4"/>
 <begin mov="1" start="0">
 -<mvrotace id="1" duration="1000">
 <ace ang="9"/>
 <velini ang="-50">
 <axisp1 x="0" y="0" z="1.85">
 <axisp2 x="0" y="1" z="1.85">
 </mvrotace>
 </obj>
- <objreal ref="5">
 <begin mov="1" start="0"/>
 -<mvcirace id="1" duration="1000">
 <ace ang="9"/>
 <velini ang="-50">
 < ref x="1.3" y="-0.7" z="1.85">
 <axisp1 x="0" y="0" z="1.85"/>
 <axisp2 x="0" y="1" z="1.85"/>
 </mvcirace>
 </objreal>
</motion>
<mvrotace>: accelerated rotational movement
ace indicates the angular acceleration velini indicates the initial angular velocity axisp1 first point of the rotation axis axisp2 second point of the rotation axis
<mvcirace>: accelerated circular movement
ace indicates the angular acceleration ref indicates the point of the object that rotates with the axis
velini indicates the initial angular velocity axisp1 first point of the rotation axis axisp 2 second point of the rotation axis

\section*{CASEDEF-MOTION}
-Motion06: accelerated rotation motion (<mvrotace />) and accelerated circular motion (<mvcirace />).

\section*{CASEDEF-MOTION}
-Motion07: sinusoidal movement (<mvrectsinu />, <mvrotsinu />, <mvcirsinu />)

\section*{- <motion>}
- <objireal ref="4">
<begin mov="1" start="0">
- <mvrotsinu id="1" duration="5" next="2"> <axispl \(\mathrm{x}=\) "0" \(\mathrm{y}=\) "0" \(\mathrm{z}=\) " 2.85 " \(>\) <axisp2 \(x=" 0\) " \(y=" 1 " \mathrm{z}=\) " 2.85 " > \(>\) <freq v="0.2"> <ampl v="60"> < phase v="0">
</mvrotsinu>
- <mvrotsinu id="2" duration="5" next="1"> <axispl \(x=\) " 0 " \(y=\) " 0 " \(\mathrm{z}=\) " \(2.85^{\prime \prime}\) / \(>\) <axisp2 \(x=\) " 0 " \(y=11 " \mathrm{z}=\) " \(2.85^{\prime \prime} />\) <freq \(v=\) " \(0.4^{\prime \prime} />\) <ampl v="75"/>
</mvrotsinu>
</objreal>
- <objireal ref="5">
<begin mov="1" start="0">
- <mvcirsinu id="1" duration="5" next="2" \(<\) ref \(x=" 0 " y="-0.7^{\prime \prime} z=" 0.2\) " \(>\) <axispl \(x=\) " 0 " \(\mathbf{y}=\) " 0 " \(\mathbf{z}=\) " 2.85 " > \(>\) <axisp2 \(x=\) " 0 " \(y=" 1 " \mathrm{z}=\) " \(2.85^{\prime \prime} />\) <freq \(v=\) " \(0.2^{\prime \prime}\) /> <ampl v="60"> <phase v="0"/>
</mvcirsinu>
- <mvcirsinu id="2" duration="5" next="1">
\(<\) ref \(x=" 0 " y="-0.7^{\prime \prime} z=" 0.2^{\prime \prime}>\)
<axispl \(x=\) " 0 " \(y=\) " 0 " \(\mathbf{z =}=2.85^{\prime \prime} />\)
<axisp2 \(x=\) " 0 " \(y=11 " \mathrm{z}=\) " 2.85 " \(>\)
<freq \(v=" 0.4\) " > \(>\)
<ampl v="75"/>
<phase v="0">
</mvcirsinu>
</objreal>
- <objreal ref="6">
<begin mov="1" start="0">
- <mvrectsinu id="1" duration=" 5 " next="2"> <freq \(x=" 0.2^{2 \prime} y=" 0 " z=" 0 ">\)
<ampl \(x=" 2.30\) " \(y=\) " 0 " \(z=" 0 ">\)
<phase \(x=" 0 " y=" 0\) " \(z=" 0 ">\)
</mvrectsinu>
- <mvrectsinu id="2" duration="5" next="1"> <freq \(x=" 0.4^{4} y=" 0 " \mathrm{z}=\) " 0 " \(>\)
\(<a m p l x=" 2.55^{\prime \prime} y=" 0 " \mathrm{z}=\) " 0 " \(/>\)
<phase \(x=" 0 " y=" 0\) " \(z=" 0 ">\)
</mvrectsinu>
</objreal>
</motion>
<mvrectsinu>: sinusoidal rectilinear movement
<mvrotsinu>: sinusoidal rotational movement
<mvcirsinu>: sinusoidal circular movement
axisp1 first point of the rotation axis axisp2 second point of the axis freq frequency
ampl amplitude
phase phase

\section*{CASEDEF-MOTION}
-Motion07: sinusoidal movement (<mvrectsinu />, <mvrotsinu />, <mvcirsinu />)

Time: 0.00 s

Time: 1.40 s

Time: 5.60 s

Time: 2.80 s

Time: 7.00 s

\section*{CASEDEF-MOTION}
-Motion08: predefined movement with data from an external file (<mvpredef /> or <mvfile />)
```

- <motion>
    - <objreal ref="200">
<begin mov="1" start="0"/>
-<mppredef id="1" duration="10">
<file name="motion08mov_£3.out" fields="4" fieldtime="0" fieldx="1" fieldy="2" fieldz="3"/>
</mvpredef>
</objreal>
-<objreal ref="150">
<begin mov="1" start="0"/>
-<mvpredef id="1" duration="8" next="2">
<file name="motion08mov_f3.out" fields="4" fieldtime="0" fieldx="1" fieldy="2"/>
</mvpredef>
-<mvrect id="2" duration="-1">
<vel x="0" y="0" z="-0.02">
</mvrect>
</objreal>
-<objreal ref="151">
<begin mov="1" start="0"/>
-<mvpredef id="1" duration="10">
<file name="motion08mov_f3.out" fields="4" fieldtime="0" fieldx="1" fieldz="3">
</mvpredef>
</objreal>
- <objreal ref="152">
      <begin mov="1" start="0"> second field (or column) has reference "1"
  -<mppredef id="1" duration="10">
      <file name="motion08mov_f3.out" fields="4" fieldtime="0" fieldy="2" fieldz="3"/>
      </mvpredef>
  </objreal>

</motion>

## CASEDEF-MOTION

- Motion08: predefined movement with data from an external file (<mvpredef />or <mvfile />)


Time: 0.00 s


Time: 6.00 s


Time: 3.00 s


Time: 9.00 s

## CASEDEF-MOTION

- Motion09: predefined movement with data from an external file (<mvrotfile />)
<mvrotfile />: prescribed motion loaded from a file with degrees
name name of the file
$\operatorname{axisp} 1 \& \operatorname{axisp} 2$ two points to define the axis of rotation

```
<motion>
 <objreal ref="1">
 <begin mov="1" start="0" finish="100" />
 <mvrotfile id="1" duration="9" next="2" anglesunits="degrees">
 <file name="Motion09mov_deg.csv" />
 <axisp1 x="1" y="1" z="0.03" />
 <axisp2 x="1" y="-1" z="0.03" />
 </mvrotfile>
 <mvrotfile id="2" duration="9" anglesunits="radians">
 <file name="Motion09mov_rad.csv" />
 <axisp1 x="1" y="-1" z="0.03" />
 <axisp2 x="1" y="1" z="0.03" />
 </mvrotfile>
 </objreal>
</motion>
```



## CASEDEF-MOTION

-Motion09: predefined movement with data from an external file (<mvrotfile />)


## XML fille EXECUTION-SPECIAL-WAVEPADDLES-PISTON

## Generation of regular waves

```
<piston>
 <mkbound value="10" comment="Mk-Bound of selected particles" />
 <waveorder value="2" comment="Order wave generation 1:1st order, 2:2nd order (def=1)" />
 <start value="0" comment="Start time (def=0)" />
 <duration value="0" comment="Movement duration, Zero is the end of simulation (def=0)" />
 <depth value="0.27" comment="Fluid depth (def=0)" />
 <fixeddepth value="0" comment="Fluid depth without paddle (def=0)" />
 <pistondir x="1" y="0" z="0" comment="Movement direction (def=(1,0,0))" />
 <waveheight value="0.1" comment="Wave height" />
 <waveperiod value="1.3" comment="Wave period" />
 <phase value="0" comment="Initial wave phase in function of PI (def=0)" />
 <ramp value="0" comment="Periods of ramp (def=0)" />
 <savemotion periods="24" periodsteps="20" xpos="2" zpos="-0.15"
 comment="Saves motion data. xpos and zpos are optional. zpos=-depth" />
</piston>
- waveorder: order of wave generation (\(1^{\text {st }}\) order or \(2^{\text {nd }}\) order)
-depth: depth at front of the piston
-waveheight: wave height H
- waveperiod: wave period T
- ramp: number of periods to smooth the movement of the piston
-savemotion: saves theoretical results of elevation and orbital velocities at xpos and zpos

\section*{XML fille EXECUTION-SPECIAL-WAVEPADDLES-PISTON}

\section*{Generation of regular waves}
- waveorder: order of wave generation (\(1^{\text {st }}\) order or \(2^{\text {nd }}\) order)
-depth: depth at front of the piston
- waveheight: wave height \(H\)
- waveperiod: wave period \(T\)
- ramp: number of periods to smooth the movement of the piston
-savemotion: saves theoretical results of elevation and orbital velocities at xpos and zpos
<savemotion periods="24" periodsteps="20" xpos="2" zpos="-0.15" />

Elevation at \(\mathrm{x}=2 \mathrm{~m}\)

\section*{EXECUTION-SPECIAL-WAVEPADDLES-PISTON_SPECTRUM}

\section*{Generation of irregular waves}
```

<piston_spectrum>
<mkbound value="10" comment="Mk-Bound of selected particles" />
<waveorder value="2" comment="Order wave generation 1:1st order, 2:2nd order (def=1)" />
<start value="0" comment="Start time (def=0)" />
<duration value="0" comment="Movement duration, Zero is the end of simulation (def=0)" />
<depth value="0.27" comment="Fluid depth (def=0)" />
<fixeddepth value="0" comment="Fluid depth without paddle (def=0)" />
<pistondir x="1" y="0" z="0" comment="Movement direction (def=(1,0,0))" />
<spectrum value="jonswap" comment="Spectrum type: jonswap,pierson-moskowitz" />
<discretization value="stretched"
        comment="Spectrum discretization: regular,random,stretched,cosstretched (def=stretched)" />
<waveheight value="0.1" comment="Wave height" />
<waveperiod value="1.3" comment="Wave period" />
<peakcoef value="3.3" comment="Peak enhancement coefficient (def=3.3)" />
<waves value="128" comment="Number of waves to create irregular waves (def=50)" />
<randomseed value="2" comment="Random seed to initialize a pseudorandom number generator" />
<serieini value="2.8" comment="Initial time in irregular wave serie (def=0)" />
<ramptime value="1" comment="Time of ramp (def=0)" />
<savemotion time="50" timedt="0.05" xpos="2" zpos="-0.15"
    comment="Saves motion data. xpos and zpos are optional. zpos=-depth" />
<saveserie timemin="0" timemax="1300" timedt="0.05" xpos="0" comment="Saves serie data (optional)" />
<saveseriewaves timemin="0" timemax="1000" xpos="2" comment="Saves serie heights" />
</piston_spectrum>

```

\section*{EXECUTION-SPECIAL-WAVEPADDLES-PISTON_SPECTRUM}

\section*{Generation of irregular waves}
-waveorder: order of wave generation (\(1^{\text {st }}\) order or \(2^{\text {nd }}\) order)
-spectrum: type of spectrum (Jonswap or Pierson-Moskowitz)
- waveheight: significant wave height \(H_{s}\)
- waveperiod: peak wave period \(T_{p}\)
-serieini: initial series of the irregular train is chosen from "WavePaddle_mkb0010_Serie.csv"
- ramptime: time to slowly start a smoothed movement of the piston
-savemotion: saves theoretical results of elevation and orbital velocities at xpos and zpos
<savemotion time="50" timedt="0.05" xpos="2" zpos="-0.15" />

Elevation at \(\mathrm{x}=2 \mathrm{~m}\)

\section*{EXECUTION-PARAMETERS}

\section*{Parameters for execution in DualSPHysics}
```

<parameters>
```

```
    <parameter key="StepAlgorithm" value="1" comment="Step Algorithm 1:Verlet, 2:Symplectic (default=1)" />
    <parameter key="Verletsteps" value="40" comment="Verlet only: Number of steps to apply Euler timestepping (default=40)" />
    <parameter key="Kernel" value="1" comment="Interaction Kernel 1:Cubic Spline, 2:Wendland (default=2)" />
    <parameter key="ViscoTreatment" value="1" comment="Viscosity formulation 1:Artificial, 2:Laminar+SPS (default=1)" />
    <parameter key="Visco" value="0.1" comment="Viscosity value" />
    <parameter key="ViscoBoundFactor" value="1" comment="Multiply viscosity value with boundary (default=1)" />
    <parameter key="DeltaSPH" value="0" comment="DeltaSPH value, 0.1 is the typical value, with 0 disabled (default=0)" />
    <parameter key="#Shifting" value="0" comment="Shifting mode 0:None, 1:Ignore bound, 2:Ignore fixed, 3:Full (default=0)" />
    <parameter key="#ShiftCoef" value="-2" comment="Coefficient for shifting computation (default=-2)" />
```

```
    <parameter key="RigidAlgorithm" value="1" comment="Rigid Algorithm 1:SPH, 2:DEM (default=1)" />
```


```
    <parameter key="#DtIni" value="0.0001" comment="Initial time step (default=h/speedsound)" units_comment="seconds" />
    <parameter key="#DtMin" value="0.00001" comment="Minimum time step (default=coefdtmin*h/speedsound)" units_comment="seconds" />
    <parameter key="#DtFixed" value="DtFixed.dat" comment="Dt values are loaded from file (default=disabled)" />
```

```
    <parameter key="TimeMax" value="1.5" comment="Time of simulation" units_comment="seconds" />
    <parameter key="TimeOut" value="0.01" comment="Time out data" units_comment="seconds" />
    <parameter key="Incz" value="1" comment="Increase of Z+" units_comment="decimal" />
```

```
    <parameter key="RhopOutMin" value="700" comment="Minimum rhop valid (default=700)" units comment="kg/m^3" />
    <parameter key="RhopOutMax" value="1300" comment="Maximum rhop valid (default=1300)" units_comment="kg/m^3" />
</parameters>
```

\section*{Double precision}
```

<parameter key="PosDouble" value="2"
comment="Precision in particle interaction 0:Simple, 1:Double, 2:Uses and saves double" />

```

\section*{DualSPHysics v4.0 includes now implementation with double precision.}

Precision in particle interaction (the most time consuming part) can be:
0 : particle interaction is performed using simple precision for variables of position
Necessary when "dp" is much smaller than size of the domain:
1: particle interaction is performed using double precision for variables of position but final position is stored using simple precision
2: particle interaction is performed using double precision for variables of position and final position is stored using double precision
distance of particle interaction: \(\mathrm{dp}=0.012374 \mathrm{~m}\)

\section*{EXECUTION-PARAMETERS}

Time integrator scheme
```

<parameter key="StepAlgorithm" value="1"
comment="Step Algorithm 1:Verlet, 2:Symplectic (default=1)" />

| <parameter key="Verletsteps" value="40" |  |
| :--- | :--- |
|  | comment="Verlet only: Number of steps to apply Euler timestepping (default=40)" /> |

```

\section*{Verlet algorithm}
\[
\begin{aligned}
& \boldsymbol{v}_{a}^{n+1}=\boldsymbol{v}_{a}^{n-1}+2 \Delta t \boldsymbol{F}_{a}^{n} \\
& \boldsymbol{r}_{a}^{n+1}=\boldsymbol{r}_{a}^{n}+\Delta t \boldsymbol{V}_{a}^{n}+0.5 \Delta t^{2} \boldsymbol{F}_{a}^{n} \\
& \rho_{a}^{n+1}=\rho_{a}^{n-1}+2 \Delta t \boldsymbol{D}_{a}^{n}
\end{aligned}
\]

\section*{once every \(M\) time steps}
\[
\begin{aligned}
\boldsymbol{v}_{a}^{n+1} & =\boldsymbol{v}_{a}^{n}+\Delta t \boldsymbol{F}_{a}^{n} \\
\boldsymbol{r}_{a}^{n+1} & =\boldsymbol{r}_{a}^{n}+\Delta t \boldsymbol{V}_{a}^{n}+0.5 \Delta t^{2} \boldsymbol{F}_{a}^{n} \\
\rho_{a}^{n+1} & =\rho_{a}^{n}+\Delta t D_{a}^{n}
\end{aligned}
\]
\[
\begin{aligned}
& \boldsymbol{r}_{a}^{n+\frac{1}{2}}=\boldsymbol{r}_{a}^{n}+\frac{\Delta t}{2} \boldsymbol{v}_{a}^{n} \\
& \rho_{a}^{n+\frac{1}{2}}=\rho_{a}^{n}+\frac{\Delta t}{2} D_{a}^{n}
\end{aligned}
\]

Predictor
\[
\begin{aligned}
& \boldsymbol{v}_{a}^{n+1}=\boldsymbol{v}_{a}^{n+\frac{1}{2}}+\frac{\Delta t}{2} \boldsymbol{F}_{a}^{n+\frac{1}{2}} \\
& \boldsymbol{r}_{a}^{n+1}=\boldsymbol{r}_{a}^{n+\frac{1}{2}}+\frac{\Delta t}{2} \boldsymbol{v}_{a}^{n+1}
\end{aligned}
\]

Corrector

\section*{XML file}

\section*{EXECUTION-PARAMETERS}
\[
\frac{\text { Kernel function }}{\frac{d \boldsymbol{v}_{a}}{d t}=-\sum_{b} m_{b}\left(\frac{P_{b}+P_{a}}{\rho_{b} \cdot \rho_{a}}+\Pi_{a b}\right) \overparen{\nabla_{a} W_{a b}}+\boldsymbol{g}}
\]
<parameter key="Kernel" value="1"
comment="Interaction Kernel 1:Cubic Spline, 2:Wendland (default=2)" />

\section*{Cubic Spline}
\[
W(r, h)=\alpha_{D}\left\{\begin{array}{cc}
1-\frac{3}{2} q^{2}+\frac{3}{4} q^{3} & 0 \leq q \leq 1 \\
\frac{1}{4}(2-q)^{3} & 1 \leq q \leq 2 \\
0 & q \geq 2
\end{array}\right.
\]
where \(\alpha_{D}\) is equal to \(10 / 7 \pi h^{2}\) in 2-D and \(1 / \pi h^{3}\) in 3-D

\section*{Wendland}
\[
W(r, h)=\alpha_{D}\left(1-\frac{q}{2}\right)^{4}(2 q+1) \quad 0 \leq q \leq 2
\]
where \(\alpha_{D}\) is equal to \(7 / 4 \pi h^{2}\) in 2-D and \(21 / 16 \pi h^{3}\) in 3-D

\section*{XML file}

\section*{EXECUTION-PARAMETERS}

\section*{Viscosity treatment}
```

<parameter key="ViscoTreatment" value="1"
    comment="Viscosity formulation 1:Artificial, 2:Laminar+SPS (default=1)" />
<parameter key="Visco" value="0.02" comment="Viscosity value" />
<parameter key="ViscoBoundFactor" value="1"
    comment="Multiply viscosity value with boundary (default=1)" />

```
\[
\begin{gathered}
\frac{d \boldsymbol{v}_{a}}{d t}=-\sum_{b} m_{b}\left(\frac{P_{b}+P_{a}}{\rho_{b} \cdot \rho_{a}}+\Pi_{a b}\right) \nabla_{a} W_{a b}+\boldsymbol{g} \\
\Pi_{a b}=\left\{\begin{array}{cl}
\frac{-a \overline{c_{a b}} \mu_{a b}}{\rho_{a b}} & \boldsymbol{v}_{a b} \cdot \boldsymbol{r}_{a b}<0 \\
0 & \boldsymbol{v}_{a b} \cdot \boldsymbol{r}_{a b}>0
\end{array}\right.
\end{gathered}
\]
\(\alpha=0.01 \quad\) for wave tanks
higher values of \(\alpha\) for dam-break (depends on \(d p\))

\section*{EXECUTION-PARAMETERS}

\section*{Viscosity treatment}
```

<parameter key="ViscoTreatment" value="1"
    comment="Viscosity formulation 1:Artificial, 2:Laminar+SPS (default=1)" />
<parameter key="Visco" value="0.02" comment="Viscosity value" />
<parameter key="ViscoBoundFactor" value="1"
comment="Multiply viscosity value with boundary (default=1)"

```
\[
\begin{gathered}
\frac{d \boldsymbol{v}_{a}}{d t}=-\sum_{b} m_{b}\left(\frac{P_{b}+P_{a}}{\rho_{b} \cdot \rho_{a}}+\Pi_{a b}\right) \nabla_{a} W_{a b}+\boldsymbol{g} \\
\Pi_{a b}=\left\{\begin{array}{cc}
\frac{-\alpha \overline{c_{a b}} \mu_{a b}}{\overline{\rho_{a b}}} & \boldsymbol{v}_{a b} \cdot \boldsymbol{r}_{a b}<0 \\
0 & \boldsymbol{v}_{a b} \cdot \boldsymbol{r}_{a b}>0
\end{array}\right.
\end{gathered}
\]
\begin{tabular}{c}
\(\boldsymbol{\alpha}_{F F}\) for interaction fluid-fluid \\
\(\boldsymbol{\alpha}_{F B}\) for interaction fluid-boundary \\
\(\boldsymbol{\alpha}_{F B}=\) ViscoBoundFactor \(\cdot \boldsymbol{\alpha}_{F F}\) \\
\hline
\end{tabular}

\section*{XML file}

\section*{EXECUTION-PARAMETERS}

Viscosity treatment
```

<parameter key="ViscoTreatment" value="2"
    comment="Viscosity formulation 1:Artificial, 2:Laminar+SPS (default=1)" />

```
<parameter key="Visco" value="0.000001" comment="Viscosity value" units_comment="m^2/s" />
\[
\frac{d \boldsymbol{v}_{a}}{d t}=-\sum_{b} m_{b}\left(\frac{P_{b}}{\rho_{b}^{2}}+\frac{P_{a}}{\rho_{a}^{2}}\right) \nabla_{a} W_{a b}+\boldsymbol{g}+\sum_{b} m_{b}\left(\frac{4 \rho_{0} r_{a b} \cdot \nabla_{a} W_{a b}}{\left(\rho_{a}+\rho_{b}\right)\left(r_{a b}^{2}+\eta^{2}\right)}\right) \boldsymbol{v}_{a b}+\sum_{b} m_{b}\left(\frac{\vec{\tau}_{i j}^{b}}{\rho_{b}^{2}}+\frac{\vec{\tau}_{i j}^{a}}{\rho_{a}^{2}}\right) \nabla_{a} W_{a b}
\]
\(v_{o}\) is kinematic viscosity (typically \(10^{-6} \mathrm{~m}^{2} \mathrm{~s}\) for water

\section*{XML file}

\section*{EXECUTION-PARAMETERS}

\section*{DeltaSPH formulation}
```

<parameter key="DeltaSPH" value='0.1"
comment="DeltaSPH value, 0.1 is the typical value, with 0 disabled (default=0)" />

```

\section*{XML file}

\section*{EXECUTION-PARAMETERS}

\section*{Shifting algorithm}
```

<parameter key="Shifting" value="2"
    comment="Shifting mode 0:None, 1:Ignore bound, 2:Ignore fixed, 3:Full (default=0)" />
<parameter key="ShiftCoef" value="-2"
    comment="Coefficient for shifting computation (default=-2)" />
<parameter key="ShiftTFS" value="1.5"
    comment="Threshold to detect free surface. Typically 1.5 for 2D and 2.75 for 3D" />

```


Shifting update

\section*{SHIFTING}

SHIFTING IN THE NORMAL DIRECTION IS NOT APPLIED FOR PARTICLES AT THE FREE SURFACE
\[
\nabla \cdot \mathbf{r}>1.5
\]

Particle divergence \(\nabla \cdot \mathbf{r}=\sum_{j} \frac{m_{j}}{\rho_{j}} \mathbf{r}_{i j} \cdot \nabla_{i} W_{i j}\)

Shifting that ignores fixed boundaries

\section*{XML file}

\section*{EXECUTION-PARAMETERS}

\section*{Interaction between solids}
```

<parameter key="RigidAlgorithm" value="1"
    comment="Rigid Algorithm 1:SPH, 2:DEM (default=1)" />
<parameter key="FtPause" value="0.0"
    comment="Time to freeze the floatings at simulation start (warmup) (default=0)"
    units_comment="seconds" />

```

\section*{DEM is recommended}

Interaction between floatings
SPH or DEM

Interaction between floating and bottom
SPH or DEM

\section*{XML file}

\section*{EXECUTION-PARAMETERS}

\section*{Time step computation}
```

<parameter key="CoefDtMin" value="0.05'
comment="Coefficient to calculate minimum time step dtmin=coefdtmin*h/speedsound />
<parameter
    key="#DtIni" value="0.0001"
    comment="Initial time step (default=h/speedsound" units_comment="seconds" />
<parameter key="\#DtMin" value="0.00001"
comment="Minimum time step (default=coefdtmin*h/speedsound)" units_comment="seconds"
<parameter key="#DtFixed" value="DtFixed.dat"
    comment="Dt values are loaded from file (default=disabled)" />
\Deltat minimum }=0.05\cdot\frac{h}{\mp@subsup{c}{s}{}
\Deltat init}=\frac{h}{\mp@subsup{c}{s}{}
<parameter key="DtAllParticles"
    comment="Velocity of particles used to calculate DT.
        1:All, 0:Only fluid/floating (default=0)" />
|\Deltat}=\operatorname{min}(\sqrt{}{\sqrt{}{h/|fa|}}
\Deltat=0.3\cdot\operatorname{min}(\Delta\mp@subsup{t}{f}{},\Delta\mp@subsup{t}{cv}{})}\Delta\mp@subsup{t}{cv}{}=\operatorname{min}\longrightarrow0:b\in\mathrm{ fluid/floating
OR
1:b\in fluid/floating + boundaries

```

\section*{EXECUTION-PARAMETERS}

\section*{Physical time and frequency to store data}
```

<parameter key="TimeMax" value="10"
    comment="Time of simulation" units_comment="seconds" />
<parameter key="TimeOut" value="0.1"
    comment="Time out data" units_comment="seconds" />

```
\begin{tabular}{rl}
Number of output files & \(=\) TimeMax \(/\) TimeOut \\
& \(=10 / 0.1=100\) files
\end{tabular}

\section*{XML file}

\section*{EXECUTION-PARAMETERS}

Excluding particles by density \(700<\boldsymbol{\rho}_{\mathbf{0}}<1300\)

\section*{XML file}

\section*{EXECUTION-PARAMETERS}

\section*{Periodicity}
```

<parameter key= "XPeriodicIncz" value='0.3"
comment="Increase of Z with periodic BC" units_comment="metres (m)" />
<parameter
    key="YPeriodicIncZ" value='0.0'
    comment="Increase of Z with periodic BC" units_comment="metres (m)" />

```

\section*{\(\Delta \mathrm{z}=0.3 \mathrm{~m}\) \\ }

```

<casecet>
<congtantsdef>
Clattice bound="1" fluid="1"

```

```

        *)
    ```

```

    *)
    ```

```

    <vams value-"7" comment-" Poititropic constant for vater used in the state equation"-/
    </congtantsot:
        <definition dp="0.01" units,coment--motres (m)
        <pointmin x=-1" y="onz="-1"/>
    </definition>
        mmanisot>
            Setdramode mode"-Fol1-
            <draveox>
                Cboxt111)sol1d</boxti11>
                Mpoint x=-0-y=-1+z=0-1/
            </davavoo>
            /daravbox> mk=0" />
            <boxt:112sbottom | left | right | front | back/boxf11)
                <coint x=0- y=-1" z="0
            </main11gt>>>>>
        c/comandmp>
    </gecommy
    k/cosecet>

```

```

        Sarameter key=-verletsteps" value="40" comment-"Veriet only: Mumber of steps to apply Eoler timestepping (dofanit-40)" /
    ```

```

        \,
        <",
        *)
        <,
    ```



```

        *)
    ```


\(\underset{\text { <caseder> }}{\text { <case> }}\)
 <constantesdef>

 cefinumber value=" \(0.2^{"}\) comment-"- Coorficient to moltiply pei
 Chsw1 value="0" auto""true" comment"Maximum still water level to calculate speedofsound using coefsound" units comment="netres (m)" is

 <coefsound value"-20" comment="Coerficient to multiply speedsystem" />
 use in the simulation (by default speedofsound-ooefsound*speedsystem)" / /

 geonetry
 Sdefinition dpo"0.01" units, comment="metres (m)">

 Cpointrax
</definition)
 <commands>> \(\langle\) main11st>
 <setdramode mode="ful1" /
 <drawbox>
 (boxrfi11>solidd/boxti11>

 <size
 </daravbox> mke"
 <boxfi11>bottom | left | right | front | back</boxfil11>

 dravbox
niser

 </geomet
<execution>
 <parameters>

 <parameter key" "Visco" value"" 0.02 " comment="Viscosity value"
<parameter
key"

 <parameter key="CoerDthin" value="0.05" comment="Coerficient to calculate minimum time step dtmin=coefdtemin*h/speedsound (detailt=0.05)"

 <parameter key"-Dtallparticles" value="0" conment-"Velocity of particles used to calcoulate Dr. 1:All, 0:Only fluid/fioating (defailt=0)"

 <parameter key="Partsouthax"

 </Darticles>
<constants>

 <ctinumber value" 0 o.
 <ef1number value""0.2
<gamma value="7" />
 <xhopo value="1000" units_comment-"kg/m3" />
 <dp value="0.01" units_coment="metres (m)" / /

\(\underset{\text { </constanste> }}{\text { ensen }}\)

\section*{Summary of the number of created particles and computed constants}
```

<particles np="21001" nb="1001" nbf="1001" mkboundfirst="11" mkfluidfirst="1">
    < <fixed mkbound="0" mk="11" begin="0" count="1001" /> 
</particles>
<constants>
    <gravity x="0" y="0" z="-9.81" units_comment="m/s^2" />
    <cflnumber value="0.2" />
    <gamma value="7" />
    <rhop0 value="1000" units_comment="kg/m^3" />
    <dp value="0.01" units_comment="metres (m)" />
    <h value="1.4142135624E-002" units_comment="metres (m)" />
    <b value="1.1155371429E+006" units_comment="metres (m)" />
    <massbound value="1.0000000000E-001" units_comment="kg" />
    <massfluid value="1.0000000000E-001" units_comment="kg" />
</constants>
<motion />
```
\(n p=\) total number of particles \(n b=\) boundary particles nbf=fixed boundary particles and final \(m k\) of the objects

\section*{NOTE value of final " \(m k\) "}
\(m k=m k b o u n d+11\)
\(m k=m k f l u i d+1\)
mass=rhop0*dp*dp*dp in 3D mass \(=r h o p 0^{*} d p^{*} d p\) in 2D

\section*{YOU SHOULD ALWAYS CHECK Case_All.vtk, Case_Bound.vtk, Case_Fluid.vtk}

\section*{Input \& output files}

\section*{Run.out}

\section*{Text file with execution \(\log\)}

> Domain dimensions computed starting from minimum and maximum positions of the particles created initially

\section*{DualSPHysics v4 (10-11-2015)}
\begin{tabular}{ll}
\hline [Select CUDA Device] & \\
Device 0: "GeForce GTX 590" & \\
Compute capability: & 2.0 \\
Multiprocessors: & 16 (512 cores) \\
Memory global: & 1536 MB \\
Clock rate: & 1.23 GHz \\
Run time limit on kernels: Yes \\
ECC support enabled: & No \\
Device 1: "GeForce 8400 GS" & \\
Compute capability: & 1.1 \\
Multiprocessors: & 1 (8 cores) \\
Memory global: & 512 MB \\
Clock rate: & 1.63 GHz \\
Run time limit on kernels: Yes \\
ECC support enabled: & No \\
& \\
[GPU Hardware] & \\
Device default: 0 GeForce & GTX \(590 "\) \\
Compute capability: 2.0 & \\
Memory global: 1536 MB & \\
Memory shared: 49152 Bytes &
\end{tabular}
[Initialising JSphGpuSingle v0.70 24-11-2015 15:40:36]
**Basic case configuration is loaded
**Special case configuration is loaded
Loading initial state of particles...
Loaded particles: 5281
MapRealPos (border) \(=(-7.07107 \mathrm{e}-006,0.0999929,-7.07107 \mathrm{e}-006)-(1.60001,0.100007,0.400007)\)
MapRealPos \((\) final \()=(-7.07107 e-006,0.0999929,-7.07107 e-006)-(1.60001,0.100007,0.600014)\)
**Initial state of particles is loaded
**2D-Simulation parameters:
CaseName="CaseDambreak2D"
RunName="CaseDambreak2D"
SvDouble=False
SvTimers=True
SvTimersStep \(=0.000000\)
StepAlgorithm="Verlet"
VerletSteps \(=40\)
Kernel="Wendland"
Viscosity="Artificial"
Visco=0.300000
ViscoBoundFactor=0.000000
DeltaSph="None"
Shifting="None"
RenCorrection \(=0.000000\)
Splitting=False
FloatingFormulation="None"

\section*{Input \& output files}

\section*{Run.out}

Text file with execution \(\log\)
```

CaseNp=5281
CaseNbound=481
CaseNfixed=481
CaseNmoving=0
CaseNfloat=0
CaseNfluid=4800
PeriodicActive=0
Dx=0.005
H=0.007071
CoefficientH=1
CteB=165368.578125
Gamma=7.000000
RhopZero=1000.000000
Eps=0
Cs0=34.0232
CFLnumber=0.200000
DtIni=0.000207831
DtMin=1.03915e-005
DtAllParticles=False
MassFluid=0.025000
MassBound=0.025000
Bwen (wendland)=-7877736.000000
TimeMax=2
TimePart=0.02
Gravity=(0.000000,0.000000,-9.810000)
NpMinimum=481
RhopOut=True
RhopOutMin=700.000000
RhopOutMax=1300.000000
**Requested gpu memory for 5281 particles: 0.6 MB.
CellOrder="XYZ"
CellMode="2H"
Hdiv=1
MapCells=(114, 1, 43)
DomCells=(114,1,43)
DomCellCode="13_8_11"
PtxasFile="../../EXECS/DualSPHysics_win64_ptxasinfo"
Use code for compute capability 2.0 on hardware 2.0
BsForcesBound=128 (36 regs)
BsForcesFluid=128 (50 regs)
**CellDiv: Requested gpu memory for 5545 particles: 0.0 MB.
**CellDiv: Requested gpu memory for 1488 cells (CellMode=2H): 0.0 MB.
RunMode="Pos-Simple, Single-Gpu"
Allocated memory in CPU: 475290 (0.45 MB)
Allocated memory in GPU: }745752\mathrm{ (0.71 MB)
Part_0000 5281 particles successfully stored

```

Input \& output files

Run.out
Text file with execution \(\log\)
```

**CellDiv: Requested gpu memory for 5545 particles: 0.0 MB.
**CellDiv: Requested gpu memory for 1488 cells (CellMode=2H): 0.0 MB.
RunMode="Pos-Simple, Single-Gpu"
Allocated memory in CPU: 475290 (0.45 MB)
Allocated memory in GPU: }745752\mathrm{ (0.71 MB)
Part_0000 5281 particles successfully stored

```


```


[^0]:    </mainlist>

