
Create your own case using the XML file

April 2016

DualSPHysics team

1

Input & output files
Po
st
-P
ro
ce
ss
in
g

Pr
e-
Pr
o
ce
ss
in
g

2

Input & output files: Format files

XML File

• The eXtensible Markup Language is textual data format compatible
with any hardware and software.

• Information is structured and organised by using labels.

• They can be easily edited using any text editor.

BINARY File

• Binary format consumes six times less memory than text format.

• Reading or writing is several times faster using a binary format.

• A special code is required to read the data (JPartDataBi4.cpp/.h).

• “.bi4” is the new binary format that also includes double precision.

• The user can also define new arrays that post-processing tools can
automatic manage.

Case_Def.xml

Case.xml

Part_xxxx.bi4
PartOut.obi4

Case.bi4

3

Input & output files

Data for moving

boundaries

Data of forces exerted

on fluid

Constants and configuration

parameters for simulation

Binary file with

particle data at

initial instant

Text file with

execution log

Binary file with particle

data at output time

Binary file with excluded

particles during simulation

Created by GenCase BUT it can

also be created by the userCreated by the user

4

XML file

DUALSPHYSICS

Run.outPart_xxxx.bi2
PartOut.bi2

Case.xml

Case.bi2

mov.dat

forces.csv

GENCASE

Case_Def.xml

object.vtk
object.stl
object.ply

DUALSPHYSICS

Run.outPart_xxxx.bi2
PartOut.bi2

Case_All.vtk
Case_Bound.vtk
Case_Fluid.vtk

Case__Actual.vtk
Case__Dp.vtk

Case.xml

Case.bi2

mov.dat

forces.csv

BOUNDARYVTKPARTVTK MEASURETOOL

Points.txt

Fixed.vtk
Moving_xxxx.vtk
Floating_xxxx.vtk

PartFluid.vtk
PartBound.vtk
PartMoving.vtk
PartFloating.vtk

Pressure.csv
Velocity.csv
Height_xxxx.vtk
Acceleration.ascii

ISOSURFACE

Surface_xxxx.vtk

PointsPos.csv

GENCASE

Case_Def.xml

object.vtk
object.stl
object.ply

DUALSPHYSICS

Run.outPart_xxxx.bi2
PartOut.bi2

Case_All.vtk
Case_Bound.vtk
Case_Fluid.vtk

Case__Actual.vtk
Case__Dp.vtk

Case.xml

Case.bi2

mov.dat

forces.csv

BOUNDARYVTKPARTVTK MEASURETOOL

Points.txt

Fixed.vtk
Moving_xxxx.vtk
Floating_xxxx.vtk

PartFluid.vtk
PartBound.vtk
PartMoving.vtk
PartFloating.vtk

Pressure.csv
Velocity.csv
Height_xxxx.vtk
Acceleration.ascii

ISOSURFACE

Surface_xxxx.vtk

PointsPos.csv

5

STRUCTURE OF THE XML FILE

Divided in two sections:

“casedef”

Definition of the case with initial geometry and

configuration.

Created by the user and used by GenCase

“execution”

Information required to execute the case.

Created by the user, modified by GenCase

and only used by DualSPHysics

6

STRUCTURE OF THE XML FILE

• “casedef” :

- constantsdef constants needed in SPH

- mkconfig label configuration

- geometry system geometry (boundaries and fluid)

- definition

- commands (list & mainlist)

- initials special features for fluid particles

- floatings description of floating objects

- motion description of boundary movement

• “execution”

- special automatic wave generation and external forces

- wavepaddles (piston & piston_spectrum)

- accinputs

- parameters execution parameters in DualSPHysics
7

XML file CASEDEF-CONSTANTSDEF

8

XML file CASEDEF-CONSTANTSDEF

lattice: indicates the type of mesh

to create particles:

• 1: one particle per point

• 2: two particles per point

Lattice

9

g

v














  aba

b

ab

ab

ab
b

a W
PP

m
dt

d



XML file CASEDEF-CONSTANTSDEF
Gravity

10

XML file CASEDEF-CONSTANTSDEF
Speed of sound























 1

2










w

wsc
P

𝑠𝑝𝑒𝑒𝑑𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑔 ∙ ℎ𝑠𝑤𝑙

11

XML file CASEDEF-CONSTANTSDEF
Speed of sound























 1

2










w

wsc
P

𝑠𝑝𝑒𝑒𝑑𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑔 ∙ ℎ𝑠𝑤𝑙

12

XML file CASEDEF-CONSTANTSDEF
Speed of sound























 1

2










w

wsc
P

𝑠𝑝𝑒𝑒𝑑𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑔 ∙ ℎ𝑠𝑤𝑙

13

XML file CASEDEF-CONSTANTSDEF
Kernel size

ℎ = 𝑐𝑜𝑒𝑓ℎ ∙ 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

ℎ = 𝑐𝑜𝑒𝑓ℎ ∙ 3 ∙ 𝑑𝑝2

ℎ = 𝑐𝑜𝑒𝑓ℎ ∙ 3 ∙ 𝑑𝑝

coefh=1 typical value

coefh=1.2, 1.5 better for wave propagation

ℎ𝑑𝑝 = ℎ/𝑑𝑝

Other option is to define:

14

XML file CASEDEF-CONSTANTSDEF
Time-step

15

CASEDEF-MKCONFIG

mkorientation: determines the order of particles

when creating one object (useful for

visualization with the variable idp)

mkorientfluid = “xyz”

mkorientfluid = “xyz”

mkorientfluid = “yzX”

mkorientfluid = “ZYx”

mk: label used to

- defines the order objects are created

- applies specific features to the different set of

points such as movement, rigid motion…

240 labels for boundary particles and

10 labels for fluid particles

16

XML file

dp defines the distance between particles

WHEN CHANGING THIS PARAMETER, THE TOTAL NUMBER OF PARTICLES IS MODIFIED

pointmin & pointmax defines the dimensions of the domain where particles can be created

pointmax

CASEDEF-GEOMETRY-DEFINITION

NOTE that particles are only created within this domain.

Once particles have been created the dimensions of the

domain for simulation are calculated again starting from

minimum and maximum positions of the created particles.
pointmin

XML file

A 2-D configuration can be generated by imposing the same values along Y-direction

<pointmin> = <pointmax>

CASEDEF-GEOMETRY-DEFINITION

18

XML file

Volume of fluid: setmkfluid mk=0,
solid to create particles within the specified volume
drawbox to plot a rectangular box defining a corner
and its size in the 3 directions

Boundary Tank: setmkbound mk=0,
specify box faces on which particles are
created (top is not used in this example)

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

19

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

<setdrawmode>:

– “wire”: wire mode

– “face”: draw faces

– “solid”: draw inside

– “full”: combines face and solid

wire face

solid full

20

This command indicates the mode to create points where particles will be generated

<setshapemode>: defines the draw operations to create VTK files (polygons)

• “real”: using the real coordinates

• “dp”: adjusting coordinates to dp

• “fluid”: operations with mk-fluid

• “bound”: operations with mk-bound

• “void”: operations with mk-void

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

21

<setshapemode>: defines the draw operations to create a VTK files (polygons)

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

shapeout: creates VTK files (polygons)

of all the bound objects

Case__Real.vtk

Case__Dp.vtk

shapeout: creates VTK files (polygons)

of only some bound objects

Case_Box_Dp.vtk

Case_Building_Dp.vtk

22

reset=“true” objects created after this command will be saved on a different VTK file

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

<setmkvoid>, <setmkfluid>, <setmkbound>: defines the label mk to draw points of type:

void (empty), fluid, bound

<setmknextfluid>, <setmknextbound>: increases (decreases) the value of mk with next=true (=false)

<setmknextauto>: after each draw command mk is increased automatically

23

These commands indicate the type of particles to be generated

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

<move>: a displacement is applied to the transformation matrix

<scale>: scaling is applied to matrix

<rotate>:a starting vector and angle are given for object rotation

<matrixreset>: the modified matrix is replaced by the original one (identity matrix)
24

Transformation utilities

<drawbox …>
<move x="0.5" y="0" z="0"/>

<drawbox …>

<scale x="2" y="1.5" z="0.5"/>

<drawbox …>

<rotate x="0" y="0" z="1" ang="45"/>

<drawbox …>

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

25

<setlinebegin>: sets the begining of the line with <drawlineto>

<drawlineto>: draws a line to a given point

<drawline>: draws a line between two points

<drawlines>: draws lines between several points

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

26

LINES

<drawtriangle>: draws a triangle with tree points (points
must always go counterclockwise)

<drawquadri>: draws the quadrilateral described by four
points (points may not be in the same plane)

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

27

TRIANGLES

<drawtrianglesstrip>: draws a series of chained triangles

0

1

2

3

4

5

6

7

8

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

28

TRIANGLES

<drawtrianglesfan>: draws a range of triangles

0 1

2

3
4

5

0

1/10

2

3

4

5
6

7

8

9

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

29

TRIANGLES

<drawtriangles>: draws a series of triangles defined by

a set of points or a set of triangles

0

2

3

4

5

6
7

1

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

30

TRIANGLES

<drawfigure>: draws a solid figure consisting of all the interior
points to the planes formed by the given triangles

DrawFigure

(drawmode=solid)

DrawTriangles or

DrawFigure (drawmode=face)

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

31

FIGURE

<drawpyramid>: draws a pyramid with the top point and
other points of the base (minimum 3)

mask indicates the faces to be hidden with bits
the first bit always corresponds to the base and the rest to
the faces following the order

Pyramid1

(mask=0)
Pyramid2

(mask=2=0010)

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

32

<drawprism>: draws a prism with a minimum of 6 points

The first half of points are the base and the second half the top
(the number of points must be even)

mask indicates the faces to be hidden with bits
The first bit corresponds to the base, the second to the top and
the rest to the faces following the order

Prism1 (mask=0) Prism2 (mask=2=00010)

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

33

PRISM

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

34

<drawprism>: draws a prism with a minimum of 6 points

The first half of points are the base and the second half the top
(the number of points must be even)

mask indicates the faces to be hidden with bits
The first bit corresponds to the base, the second to the top and
the rest to the faces following the order

PRISM

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

35

PRISM

mask indicates the faces to be hidden

Initially this is defined using BITS

FOR EXAMPLE: OBJECT WITH 4 FACES:

mask=“0” decimal 0 is 0000 in binary no faces are hidden

mask=“1” decimal 1 is 0001 in binary first face is hidden

mask=“2” decimal 2 is 0010 in binary second face is hidden

mask=“4” decimal 4 is 0100 in binary third face is hidden

mask=“8” decimal 8 is 1000 in binary fourth face is hidden

mask=“12” decimal 12 is 1100 in binary third and fourth face are hidden

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

MASK

36

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

37

EXAMPLE: CaseWavemaker_Def.xml

There is a second and easiest system to use mask

mask can be also defined using the index of the faces instead of bits

In this example, faces 1, 2, 6 and 7 are not created, only 3,4 and 5

It is important to use symbol “|” to detect this system!!!

1

2 3

4

5

7

6

3

4

5

PRISM

<drawbox>: draws a box with an initial point and the size

<boxfill> indicates if solid or face and the faces to be hidden

BoxB (all^top) BoxC (bottom|left|right)

BoxSolid (solid) BoxA (all)

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

38

means

all faces excluding top

means only

bottom+left+right

top

bottom

left
right

front

back

BOX

<drawbeach>: draws a beach with the lateral points that formed the profile of the beach

mask indicates the faces to be hidden .

BeachFace
(mask=“128”)

BeachFace

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

39

mask=“128” decimal 128 is 10000000 in binary eighth face is hidden

BEACH

<drawsphere>: draws a sphere with the center point and the radius

Sphere

(drawmode=solid)
Sphere

(drawmode=face)

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

when face:

ctesphere indicates the width of the sphere

ctespherenumsides indicates the number of triangles used

to create the VTK of polygons

40

SPHERE

<drawcylinder>: draws a cylinder with two points and radius

mask indicates the faces to be hide

Cylinder

(drawmode=solid)

Cylinder

(drawmode=face)

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

when face:

ctecylindertube indicates the width of the tube

ctecylindercover indicates the width of the covers

ctespherenumsides indicates the number of triangles used

to create the VTK of polygons
41

CYLINDER

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

<drawfilevtk>: load a VTK file to be converted into points

<drawfileply>: load a PLY file to be converted into points

<drawfilestl>: load a STL file to be converted into points

Some modifications can be applied to the VTK, PLY or STL

drawmove a displacement is applied to the external object

drawrotate a rotation is applied to the external object

drawscale scaling is applied to the external object

42

IMPORTING EXTERNAL GEOMETRIES

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

from VTK to points

43

IMPORTING EXTERNAL GEOMETRIES

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

<fillpoint>: fills with points starting from the seed

<fillbox>: fills with points starting from the seed

within the limits defined by a box

<fillfigure>: fills with points starting from the seed

within the limits defined by a figure

<fillprism>: fills with points starting from the seed

within the limits defined by a prism

<modefill> indicates what type of points can be filled

with void, fluid, bound, it fills with that type of points

inside the specified limits or the presence of a given

type of point using border

44

FILLING DOMAINS

CASEDEF-GEOMETRY-COMMANDS-MAINLIST

limits of the

domain to fill

seed point

filling with fluid while void and

before the limits defined by a box
45

FILLING DOMAINS

CASEDEF-INITIALS

<initials>: special behaviours can be imposed to a set of

fluid particles labeled with a mk, such as:

<velocity> initial velocity defined by a vector

<velwave> a solitary wave defined by depth and amplitude

46

INITIAL VELOCITIES

CASEDEF-INITIALS

vsphere = (1.05,0,4.905)
vbox = (-0.875,0,5.886)

different initial velocities are imposed to two

volumes of fluid mk=1 (sphere) and mk=2 (box)

47

INITIAL VELOCITIES

CASEDEF-INITIALS

colour represents velocity

48

INITIAL VELOCITIES

CASEDEF-FLOATINGS

<floatings>: indicates that a set of particles labelled with

the same mk constitutes a floating object

Only one of these values can be defined:

rhopbody density of the object

relativeweight in relation to the reference density

massbody total mass of the object

So that, the mass of a floating particles is:

masspart = massbody / nfloat or

masspart = relativeweight * rhop0 * dp^3 or

masspart = rhopbody * dp^3

These variables are computed by GenCase or

can be also specified in advance:

center gravity center of the rigid object

inertia momentum of inertia of the rigid object

velini initial linear velocity of the object

omegaini initial angular velocity of the object

49

DEFINING FLOATINGS

CASEDEF-FLOATINGS

50

When the interaction of solids (boundaries or floatings) is computed using Discrete Element Method (DEM)

some extra properties with parameters used in DEM are loaded from “Floating_Materials.xml”:

DEFINING FLOATINGS

CASEDEF-PROPERTIES

51

DEFINING OTHER VARIABLES

Using section properties, users can define variables to be assigned to one or more mk.

Each label of property has a name and can group several values

that can be text (other) or a number (weight)

or other subvalues (massbody and center)

CASEDEF-PROPERTIES

52

These properties can be loaded from an external file using propertyfile.

In this case, users have to indicate file name and path to access section with properties.

Example of file “ftdata_ext.xml”:

Section links assigns one or more property to one or several values of mk:

- Values of material_1 are assigned to fluid particles with mk=0

- Values of material_2 and data_x are assigned to boundary particles with mk=1,3,4,5,6

It is also possible to indicate one property directly in the definition of the floatings:

CASEDEF-PROPERTIES

53

GenCase reads the information from case.casedef.properties and writes in case.execution.particles.properties.

Thus, DualSPHysics can access to assigned values to each mk.

The object of type JSpaceParts is used to obtain the assigned properties to each block of particles

CASEDEF-MOTION

•Motion01: uniform rectilinear motion (<mvrect />) that also includes pauses (<wait />)

<mvrect>: uniform rectilinear movement

vel indicates the constant velocity vector

movement defined for the

set of particles with mk=1

first mov=1 during 0.6s,

then wait=2 for 0.3s,

then mov=3 during 0.6s,

then wait=4 for 0.3s,

then mov=5 during 0.6s…

54

CASEDEF-MOTION

•Motion01: uniform rectilinear motion (<mvrect />) that also includes pauses (<wait />)

55

CASEDEF-MOTION

•Motion02: combination of two uniform rectilinear motions (<mvrect />)

<mvrect>: uniform rectilinear movement

vel indicates the constant velocity vector

56

CASEDEF-MOTION

•Motion02: combination of two uniform rectilinear motions (<mvrect />)

57

•Motion03: movement of an object depending on the

movement of another (hierarchy of objects)

CASEDEF-MOTION

movement defined for the

set of particles with mk=2

that also moves according to the

movement defined for mk=1

58

•Motion03: movement of an object depending on the movement of another (hierarchy of objects)

CASEDEF-MOTION

59

•Motion04: accelerated rectilinear motion (<mvrectace />)

CASEDEF-MOTION

<mvrectace>: accelerated rectilinear movement

velini indicates the initial velocity vector

ace indicates the acceleration vector

60

•Motion04: accelerated rectilinear motion (<mvrectace />)

CASEDEF-MOTION

61

•Motion05: rotational motion (<mvrot />)

CASEDEF-MOTION

<mvrot>: rotational movement

vel indicates the angular velocity

axisp1 first point of the rotation axis

axisp2 second point of the rotation axis

62

•Motion05: rotational motion (<mvrot />)

CASEDEF-MOTION

63

•Motion06: accelerated rotation motion (<mvrotace />) and accelerated circular motion (<mvcirace />).

CASEDEF-MOTION

<mvrotace>: accelerated rotational movement

ace indicates the angular acceleration

velini indicates the initial angular velocity

axisp1 first point of the rotation axis

axisp2 second point of the rotation axis

<mvcirace>: accelerated circular movement

ace indicates the angular acceleration

ref indicates the point of the object that rotates

with the axis

velini indicates the initial angular velocity

axisp1 first point of the rotation axis

axisp2 second point of the rotation axis

64

•Motion06: accelerated rotation motion (<mvrotace />) and accelerated circular motion (<mvcirace />).

CASEDEF-MOTION

65

•Motion07: sinusoidal movement (<mvrectsinu />, <mvrotsinu />, <mvcirsinu />)

CASEDEF-MOTION

<mvrectsinu>: sinusoidal rectilinear

movement

<mvrotsinu>: sinusoidal rotational

movement

<mvcirsinu>: sinusoidal circular

movement

axisp1 first point of the rotation axis

axisp2 second point of the axis

freq frequency

ampl amplitude

phase phase

66

•Motion07: sinusoidal movement (<mvrectsinu />, <mvrotsinu />, <mvcirsinu />)

CASEDEF-MOTION

67

•Motion08: predefined movement with data from an external file (<mvpredef /> or <mvfile />)

CASEDEF-MOTION

<mvpredef /> or <mvfile />:

prescribed motion loaded from a file

name name of the file

fields number of columns of the file

fieldtime column with time

fieldx column with X-position

fieldy column with Y-position

filedz column with Z-position

68

first field (or column) has reference "0"

second field (or column) has reference "1"

CASEDEF-MOTION

69

•Motion08: predefined movement with data from an external file (<mvpredef /> or <mvfile />)

•Motion09: predefined movement with data from an external file (<mvrotfile />)

CASEDEF-MOTION

<mvrotfile />: prescribed motion loaded from a file with degrees

name name of the file

axisp1 & axisp2 two points to define the axis of rotation

70

•Motion09: predefined movement with data from an external file (<mvrotfile />)

CASEDEF-MOTION

71

•waveorder: order of wave generation (1st order or 2nd order)

•depth: depth at front of the piston

•waveheight: wave height H

•waveperiod: wave period T

•ramp: number of periods to smooth the movement of the piston

•savemotion: saves theoretical results of elevation and orbital velocities at xpos and zpos

(being zpos=-depth of the measuring point)

XML file EXECUTION-SPECIAL-WAVEPADDLES-PISTON

Generation of regular waves

72

•waveorder: order of wave generation (1st order or 2nd order)

•depth: depth at front of the piston

•waveheight: wave height H

•waveperiod: wave period T

•ramp: number of periods to smooth the movement of the piston

•savemotion: saves theoretical results of elevation and orbital velocities at xpos and zpos

XML file EXECUTION-SPECIAL-WAVEPADDLES-PISTON

Generation of regular waves

(being zpos=-depth of the measuring point)

73

Generation of irregular waves

EXECUTION-SPECIAL-WAVEPADDLES-PISTON_SPECTRUM

74

•waveorder: order of wave generation (1st order or 2nd order)

•spectrum: type of spectrum (Jonswap or Pierson-Moskowitz)

•waveheight: significant wave height Hs

•waveperiod: peak wave period Tp

•serieini: initial series of the irregular train is chosen from “WavePaddle_mkb0010_Serie.csv”

•ramptime: time to slowly start a smoothed movement of the piston

•savemotion: saves theoretical results of elevation and orbital velocities at xpos and zpos

EXECUTION-SPECIAL-WAVEPADDLES-PISTON_SPECTRUM

Generation of irregular waves

(being zpos=-depth of the measuring point)

75

XML file EXECUTION-PARAMETERS

Parameters for execution in
DualSPHysics

76

XML file EXECUTION-PARAMETERS
Double precision

DualSPHysics v4.0 includes now implementation with double precision.

Precision in particle interaction (the most time consuming part) can be:

0: particle interaction is performed using simple precision for variables of position

Necessary when “dp” is much smaller than size of the domain:

1: particle interaction is performed using double precision for variables of position but final position is stored

using simple precision

2: particle interaction is performed using double precision for variables of position and final position is stored

using double precision

depth: hSWL=0.18 m

length=18 m

length>depth>>dp
77

XML file EXECUTION-PARAMETERS

once every M time stepsVerlet algorithm

Symplectic algorithm

Time integrator scheme

n

a

n

a

n

a tFvv   211

n

a

n

a

n

a

n

a tt FVrr
21 5.0 

n

a

n

a

n

a tD  211 

n

a

n

a

n

a tFvv 1

n

a

n

a

n

a

n

a tt FVrr
21 5.0 

n

a

n

a

n

a tD  1

n

a

n

a

n

a

t
vrr

2
2

1





n

a

n

a

n

a D
t

2
2

1







2

1

2

1

1

2


 


n

a

n

a

n

a

t
Fvv

12

1

1

2




 
 n

a

n

a

n

a

t
vrr

Predictor Corrector 78

g

v














  aba

b

ab

ab

ab
b

a W
PP

m
dt

d



XML file EXECUTION-PARAMETERS
Kernel function

   






















20

212
4

1

10
4

3

2

3
1

3

32

q

qq

qqq

αhr,W D

where 𝛼𝐷 is equal to 10/7πh2 in 2-D and 1/πh3 in 3-D

    2012
2

1

4









 qq

q
αhr,W D

where 𝛼𝐷 is equal to 7 4𝜋ℎ2 in 2-D and 21 16𝜋ℎ3 in 3-D

Cubic Spline

Wendland

79

g

v














  aba

b

ab

ab

ab
b

a W
PP

m
dt

d


















00

0
ρ

μcα

abab

abab

ab

abab

ab

rv

rv
Π

XML file EXECUTION-PARAMETERS
Viscosity treatment

α=0.01 for wave tanks

higher values of α for dam-break (depends on dp)

80
















00

0
ρ

μcα

abab

abab

ab

abab

ab

rv

rv
Π

XML file EXECUTION-PARAMETERS
Viscosity treatment

αFF for interaction fluid-fluid

αFB for interaction fluid-boundary

αFB= ViscoBoundFactor ∙ αFF

g

v














  aba

b

ab

ab

ab
b

a W
PP

m
dt

d


















00

0
ρ

μcα

abab

abab

ab

abab

ab

rv

rv
Π

81

XML file EXECUTION-PARAMETERS
Viscosity treatment

aba

b
2

a

a

ij

2

b

b

ij

b

ab

abba

abaab

b

b

aba

b
2

a

a

2

b

b
b

a

W
ρ

τ

ρ

τ
m

)η)(rρ(ρ

Wrυ
m

W
ρ

P

ρ

P
m

dt

d





















































v

g
v

22

04
aba

b
2

a

a

ij

2

b

b

ij

b

ab

abba

abaab

b

b

aba

b
2

a

a

2

b

b
b

a

W
ρ

τ

ρ

τ
m

)η)(rρ(ρ

Wrυ
m

W
ρ

P

ρ

P
m

dt

d





















































v

g
v

22

04
aba

b
2

a

a

ij

2

b

b

ij

b

ab

abba

abaab

b

b

aba

b
2

a

a

2

b

b
b

a

W
ρ

τ

ρ

τ
m

)η)(rρ(ρ

Wrυ
m

W
ρ

P

ρ

P
m

dt

d





















































v

g
v

22

04

υo is kinematic viscosity (typically 10-6 m2s for water

82

XML file EXECUTION-PARAMETERS
DeltaSPH formulation

2 2

1
2 1a a

b ab a ab b ab a ab

b b b ab

dρ ρ
m W h m c W

dt ρ η


 
     

 
 v

r

83

XML file EXECUTION-PARAMETERS
Shifting algorithm

No Shifting
iCD r

ij

j j

j

i W
m

C  


 thAD
is  u

 
j

ijiij

j

j
W

ρ

m
rr

5.1 r
Particle divergence

Concentration gradientShifting update

SHIFTING

SHIFTING IN THE NORMAL DIRECTION

IS NOT APPLIED FOR PARTICLES

AT THE FREE SURFACE

Shifting that ignores fixed boundaries

XML file EXECUTION-PARAMETERS
Interaction between solids

Interaction between floatings
SPH or DEM

Interaction between floating and bottom
SPH or DEM

DEM is recommended

85

XML file EXECUTION-PARAMETERS
Time step computation

∆𝑡𝑖𝑛𝑖𝑡=
ℎ

𝑐𝑠

∆𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚= 0.05 ∙
ℎ

𝑐𝑠

0: b ϵ fluid/floating

OR
1: b ϵ fluid/floating + boundaries

86

XML file EXECUTION-PARAMETERS

Number of output files = TimeMax / TimeOut

= 10 / 0.1 = 100 files

Physical time and frequency to store data

87

XML file EXECUTION-PARAMETERS

𝟕𝟎𝟎 < 𝝆𝟎 < 𝟏𝟑𝟎𝟎Excluding particles by density

Excluding particles by position Incz=25%

88

XML file EXECUTION-PARAMETERS
Periodicity

Δz=0.3 m

Δz=0 m

89

XML file

DUALSPHYSICS

Run.outPart_xxxx.bi2
PartOut.bi2

Case.xml

Case.bi2

mov.dat

forces.csv

GENCASE

Case_Def.xml

object.vtk
object.stl
object.ply

DUALSPHYSICS

Run.outPart_xxxx.bi2
PartOut.bi2

Case_All.vtk
Case_Bound.vtk
Case_Fluid.vtk

Case__Actual.vtk
Case__Dp.vtk

Case.xml

Case.bi2

mov.dat

forces.csv

BOUNDARYVTKPARTVTK MEASURETOOL

Points.txt

Fixed.vtk
Moving_xxxx.vtk
Floating_xxxx.vtk

PartFluid.vtk
PartBound.vtk
PartMoving.vtk
PartFloating.vtk

Pressure.csv
Velocity.csv
Height_xxxx.vtk
Acceleration.ascii

ISOSURFACE

Surface_xxxx.vtk

PointsPos.csv

GENCASE

Case_Def.xml

object.vtk
object.stl
object.ply

DUALSPHYSICS

Run.outPart_xxxx.bi2
PartOut.bi2

Case_All.vtk
Case_Bound.vtk
Case_Fluid.vtk

Case__Actual.vtk
Case__Dp.vtk

Case.xml

Case.bi2

mov.dat

forces.csv

BOUNDARYVTKPARTVTK MEASURETOOL

Points.txt

Fixed.vtk
Moving_xxxx.vtk
Floating_xxxx.vtk

PartFluid.vtk
PartBound.vtk
PartMoving.vtk
PartFloating.vtk

Pressure.csv
Velocity.csv
Height_xxxx.vtk
Acceleration.ascii

ISOSURFACE

Surface_xxxx.vtk

PointsPos.csv

90

XML file

np=total number of particles
nb=boundary particles
nbf=fixed boundary particles
and final mk of the objects

YOU SHOULD ALWAYS CHECK
Case_All.vtk, Case_Bound.vtk, Case_Fluid.vtk

NOTE value of final “mk”
mk=mkbound+11
mk=mkfluid+1

Summary of the number of created
particles and computed constants

mass=rhop0*dp*dp*dp in 3D
mass=rhop0*dp*dp in 2D

91

Input & output files

GENCASE

Case_Def.xml

object.vtk
object.stl
object.ply

DUALSPHYSICS

Run.outPart_xxxx.bi2
PartOut.bi2

Case_All.vtk
Case_Bound.vtk
Case_Fluid.vtk

Case__Actual.vtk
Case__Dp.vtk

Case.xml

Case.bi2

mov.dat

forces.csv

BOUNDARYVTKPARTVTK MEASURETOOL

Points.txt

Fixed.vtk
Moving_xxxx.vtk
Floating_xxxx.vtk

PartFluid.vtk
PartBound.vtk
PartMoving.vtk
PartFloating.vtk

Pressure.csv
Velocity.csv
Height_xxxx.vtk
Acceleration.ascii

ISOSURFACE

Surface_xxxx.vtk

PointsPos.csv
Text file with execution log

Domain dimensions
computed starting from
minimum and maximum
positions of the particles

created initially

92

Input & output files

GENCASE

Case_Def.xml

object.vtk
object.stl
object.ply

DUALSPHYSICS

Run.outPart_xxxx.bi2
PartOut.bi2

Case_All.vtk
Case_Bound.vtk
Case_Fluid.vtk

Case__Actual.vtk
Case__Dp.vtk

Case.xml

Case.bi2

mov.dat

forces.csv

BOUNDARYVTKPARTVTK MEASURETOOL

Points.txt

Fixed.vtk
Moving_xxxx.vtk
Floating_xxxx.vtk

PartFluid.vtk
PartBound.vtk
PartMoving.vtk
PartFloating.vtk

Pressure.csv
Velocity.csv
Height_xxxx.vtk
Acceleration.ascii

ISOSURFACE

Surface_xxxx.vtk

PointsPos.csv
Text file with execution log

93

Input & output files

GENCASE

Case_Def.xml

object.vtk
object.stl
object.ply

DUALSPHYSICS

Run.outPart_xxxx.bi2
PartOut.bi2

Case_All.vtk
Case_Bound.vtk
Case_Fluid.vtk

Case__Actual.vtk
Case__Dp.vtk

Case.xml

Case.bi2

mov.dat

forces.csv

BOUNDARYVTKPARTVTK MEASURETOOL

Points.txt

Fixed.vtk
Moving_xxxx.vtk
Floating_xxxx.vtk

PartFluid.vtk
PartBound.vtk
PartMoving.vtk
PartFloating.vtk

Pressure.csv
Velocity.csv
Height_xxxx.vtk
Acceleration.ascii

ISOSURFACE

Surface_xxxx.vtk

PointsPos.csv
Text file with execution log

94

Input & output files
Po
st
-P
ro
ce
ss
in
g

Pr
e-
Pr
o
ce
ss
in
g

95

